terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

Abstract

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

In Chile, the potential of Teinturier has been little explored in the food industry, being a raw material with availability in the market, due to its large number of hectares currently productive (more than 7500) and with a competitive price compared to other fruits with high antioxidant capacity, such as other varieties of grapes, blueberries and native berries. In this context, our laboratory has developed a characterization from a commercial vineyard in the central wine-growing valley in the 2021-22 season. The grapes were harvested and analyzed for: soluble solids content (ºBrix), color, pH, acidity (%), anthocyanin content, total polyphenols, antioxidant activity (FRAP) and anthocyanin profile by HPLC and comparing with Merlot grapes produced under the same agronomic conditions. Comparatively, the teinturier grapes showed 2.29 times more anthocyanins in the skin, with Malvidin 4.27 times higher and polyphenols 2.53 times higher. This characterization seeks to position Teinturier varieties as a quality raw material of high interest for the food market due to their healthy properties. Moreover, it would provide the producers of these cultivars with a new market that ensures the long-term sustainability of these strains, and that they can opt for an alternative market, such as the health and wellness market.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Salazar-Parra C1*, Vergara C, Miranda M1, Reyes M2, Zamora O1, Farias MJ1

1Instituto de investigaciones agropecuarias, INIA La Platina.
2Instituto de investigaciones agropecuarias. INIA Raihuen.

Contact the author*

Keywords

anthocyanins, antioxidant, health food, grapevine, food industry

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).