terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Abstract

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

However, in comparison to the extensive research effort devoted to fruit varieties, there is little scientific knowledge to support grapevine rootstock breeding. Since grafting became widespread in viticulture, very few studies have been done on the genetic architecture of the relevant traits in rootstocks, even for resistance to Phylloxera or grafting ability. The current presentation will provide an overview of our knowledge on the genetics of specific rootstock traits, covering resistance to Phylloxera and nematodes, rooting and grafting abilities, and adaptation to drought and salinity. An attempt to list the resources and initiatives at the international level will be made.   

Acknowledgements: The research for rootstock breeding in Bordeaux has been supported over the years by numerous funding agencies and has benefited from the support of the wine industry. Louis Bordenave, Bernard Douens, Jean-Pierre Petit, Cyril Hévin and Nicolas Hocquard are to be acknowledged for their great involvement in the management of genetic resources  and the monitoring of plant material.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nathalie Ollat1, Jean-Pascal Tandonnet1, Marina de Miguel, Clément Saint-Cast1, Virginie Lauvergeat1, Joseph Tran1, Bernadette Rubio1, Nabil Girollet1, Pierre-François Bert1, Maria Lafargue1, Philippe Vivin1, Sarah J. Cookson1, Daniel Esmenjaud2, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France

Contact the author*

Keywords

diversity, biotic stress, abiotic stress, roots, genes, resistance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.