terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Abstract

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

However, in comparison to the extensive research effort devoted to fruit varieties, there is little scientific knowledge to support grapevine rootstock breeding. Since grafting became widespread in viticulture, very few studies have been done on the genetic architecture of the relevant traits in rootstocks, even for resistance to Phylloxera or grafting ability. The current presentation will provide an overview of our knowledge on the genetics of specific rootstock traits, covering resistance to Phylloxera and nematodes, rooting and grafting abilities, and adaptation to drought and salinity. An attempt to list the resources and initiatives at the international level will be made.   

Acknowledgements: The research for rootstock breeding in Bordeaux has been supported over the years by numerous funding agencies and has benefited from the support of the wine industry. Louis Bordenave, Bernard Douens, Jean-Pierre Petit, Cyril Hévin and Nicolas Hocquard are to be acknowledged for their great involvement in the management of genetic resources  and the monitoring of plant material.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nathalie Ollat1, Jean-Pascal Tandonnet1, Marina de Miguel, Clément Saint-Cast1, Virginie Lauvergeat1, Joseph Tran1, Bernadette Rubio1, Nabil Girollet1, Pierre-François Bert1, Maria Lafargue1, Philippe Vivin1, Sarah J. Cookson1, Daniel Esmenjaud2, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France

Contact the author*

Keywords

diversity, biotic stress, abiotic stress, roots, genes, resistance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.