terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Abstract

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

However, in comparison to the extensive research effort devoted to fruit varieties, there is little scientific knowledge to support grapevine rootstock breeding. Since grafting became widespread in viticulture, very few studies have been done on the genetic architecture of the relevant traits in rootstocks, even for resistance to Phylloxera or grafting ability. The current presentation will provide an overview of our knowledge on the genetics of specific rootstock traits, covering resistance to Phylloxera and nematodes, rooting and grafting abilities, and adaptation to drought and salinity. An attempt to list the resources and initiatives at the international level will be made.   

Acknowledgements: The research for rootstock breeding in Bordeaux has been supported over the years by numerous funding agencies and has benefited from the support of the wine industry. Louis Bordenave, Bernard Douens, Jean-Pierre Petit, Cyril Hévin and Nicolas Hocquard are to be acknowledged for their great involvement in the management of genetic resources  and the monitoring of plant material.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nathalie Ollat1, Jean-Pascal Tandonnet1, Marina de Miguel, Clément Saint-Cast1, Virginie Lauvergeat1, Joseph Tran1, Bernadette Rubio1, Nabil Girollet1, Pierre-François Bert1, Maria Lafargue1, Philippe Vivin1, Sarah J. Cookson1, Daniel Esmenjaud2, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France

Contact the author*

Keywords

diversity, biotic stress, abiotic stress, roots, genes, resistance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).