terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Abstract

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

However, in comparison to the extensive research effort devoted to fruit varieties, there is little scientific knowledge to support grapevine rootstock breeding. Since grafting became widespread in viticulture, very few studies have been done on the genetic architecture of the relevant traits in rootstocks, even for resistance to Phylloxera or grafting ability. The current presentation will provide an overview of our knowledge on the genetics of specific rootstock traits, covering resistance to Phylloxera and nematodes, rooting and grafting abilities, and adaptation to drought and salinity. An attempt to list the resources and initiatives at the international level will be made.   

Acknowledgements: The research for rootstock breeding in Bordeaux has been supported over the years by numerous funding agencies and has benefited from the support of the wine industry. Louis Bordenave, Bernard Douens, Jean-Pierre Petit, Cyril Hévin and Nicolas Hocquard are to be acknowledged for their great involvement in the management of genetic resources  and the monitoring of plant material.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nathalie Ollat1, Jean-Pascal Tandonnet1, Marina de Miguel, Clément Saint-Cast1, Virginie Lauvergeat1, Joseph Tran1, Bernadette Rubio1, Nabil Girollet1, Pierre-François Bert1, Maria Lafargue1, Philippe Vivin1, Sarah J. Cookson1, Daniel Esmenjaud2, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France

Contact the author*

Keywords

diversity, biotic stress, abiotic stress, roots, genes, resistance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.