terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Moderate wine consumption – part of a balanced diet or a health risk?

Moderate wine consumption – part of a balanced diet or a health risk?

Abstract

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide.  The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose. As a consequence, during the last few years, the upper limit of low-risk alcohol consumption has been progressively lowered in the national drinking guidelines. 

Although the authors of the Global Burden of Disease (GBD) study concluded in 2018 that it would be best for overall health to avoid drinking at all, the same GBD scientists in 2022, corrected their own previous data.  In their 2022 update [3] – different from the 2018 publication – the alcohol-related health risks in every country were considered. The results showed that the risks from the consumption of alcoholic beverages vary greatly depending on the disease, age and region. Based on these new results, a moderate consumption of wine/alcoholic beverages for individuals above 40 years of age can provide health benefits, such as a lower risk of cardiovascular diseases and diabetes. The influence of moderate wine/alcohol consumption on health was described by a J-shaped curve. Excessive drinking is always associated with an increased risk of death and various health risks.

What are the reasons for such contrary results and what is the practical significance of “global calculations” in both GBD studies?  What does it mean for the wine consumer? The latest scientific evidence of moderate wine consumption in the context a healthy lifestyle and diet will be discussed, as well as how the communication of the Wine in Moderation initiative builds on objective scientific facts.

  1. Gakidou, E.,(2018) Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 392(10152):1015-1035 DOI: https://doi.org/10.1016/S0140-6736(18)31310-2
  2. Wood, A.M., et al., Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet, 2018. 391(10129):1513-1523 DOI: https://doi.org/10.1016/S0140-6736(18)30134-X
  3. Gakidou, E. and G.A. Collaborators, Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet, 2022. 400(10347):185-235 DOI: https://doi.org/10.1016/S0140-6736(22)00847-9.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ursula Fradera1

1Deutsche Weinakademie, Platz des Weines 2, 55294 Bodenheim, Germany

Contact the author*

Keywords

alcohol, wine, benefits, health risks, global burden of disease

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].