terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Moderate wine consumption – part of a balanced diet or a health risk?

Moderate wine consumption – part of a balanced diet or a health risk?

Abstract

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide.  The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose. As a consequence, during the last few years, the upper limit of low-risk alcohol consumption has been progressively lowered in the national drinking guidelines. 

Although the authors of the Global Burden of Disease (GBD) study concluded in 2018 that it would be best for overall health to avoid drinking at all, the same GBD scientists in 2022, corrected their own previous data.  In their 2022 update [3] – different from the 2018 publication – the alcohol-related health risks in every country were considered. The results showed that the risks from the consumption of alcoholic beverages vary greatly depending on the disease, age and region. Based on these new results, a moderate consumption of wine/alcoholic beverages for individuals above 40 years of age can provide health benefits, such as a lower risk of cardiovascular diseases and diabetes. The influence of moderate wine/alcohol consumption on health was described by a J-shaped curve. Excessive drinking is always associated with an increased risk of death and various health risks.

What are the reasons for such contrary results and what is the practical significance of “global calculations” in both GBD studies?  What does it mean for the wine consumer? The latest scientific evidence of moderate wine consumption in the context a healthy lifestyle and diet will be discussed, as well as how the communication of the Wine in Moderation initiative builds on objective scientific facts.

  1. Gakidou, E.,(2018) Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 392(10152):1015-1035 DOI: https://doi.org/10.1016/S0140-6736(18)31310-2
  2. Wood, A.M., et al., Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet, 2018. 391(10129):1513-1523 DOI: https://doi.org/10.1016/S0140-6736(18)30134-X
  3. Gakidou, E. and G.A. Collaborators, Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet, 2022. 400(10347):185-235 DOI: https://doi.org/10.1016/S0140-6736(22)00847-9.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ursula Fradera1

1Deutsche Weinakademie, Platz des Weines 2, 55294 Bodenheim, Germany

Contact the author*

Keywords

alcohol, wine, benefits, health risks, global burden of disease

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.