terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Advancing grapevine science through genomic research

Advancing grapevine science through genomic research

Abstract

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations. This is crucial for understanding genes linked to both disease and environmental stress resistance. The seminar will present a super-pangenome of North American Vitis species, constructed from diploid chromosome-scale assemblies, and introduce innovative panGWAS methods for investigating abiotic stress resistance in wild grape populations.

Acknowledgements: This work is supported by the National Science Foundation grant #1741627, a Specialty Crop Research Initiative Competitive Grant, Award No. 2022-51181-38240, of the USDA National Institute of Food and Agriculture, the E&J Gallo Winery, and the Louis P. Martini Endowment.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Dario Cantù

1Department of Viticulture and Enology, University of California, Davis

Contact the author*

Keywords

genome-enabled research, diploid genomes, chromosome-scale genome assembly, aroma genetics, domestication, flower sex determination, salt tolerance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

VitiProtect–Development and testing of a downy mildew AI forecasting model for Swiss viticulture

Downy mildew (Plasmopara viticola) is a fungal pathogen that causes a destructive disease in grapevines (Vitis vinifera).

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

Terroir et marché : exemples de stratégie pour les vins d’une petite région (Muscadet – Anjou – Touraine)

The designations of origin of the Loire Valley wine have been recognized according to customs and notoriety established over the centuries since the Middle Ages. There are four main production basins going up the Loire, from Nantes to the Sancerrois region: Nantes, Anjou-Saumur, Touraine and the vineyards of the Centre. In each of these basins, there is a wide range of appellations of origin which has been established according to a logic which may not seem obvious to the uninformed.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.