terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Advancing grapevine science through genomic research

Advancing grapevine science through genomic research

Abstract

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations. This is crucial for understanding genes linked to both disease and environmental stress resistance. The seminar will present a super-pangenome of North American Vitis species, constructed from diploid chromosome-scale assemblies, and introduce innovative panGWAS methods for investigating abiotic stress resistance in wild grape populations.

Acknowledgements: This work is supported by the National Science Foundation grant #1741627, a Specialty Crop Research Initiative Competitive Grant, Award No. 2022-51181-38240, of the USDA National Institute of Food and Agriculture, the E&J Gallo Winery, and the Louis P. Martini Endowment.

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Dario Cantù

1Department of Viticulture and Enology, University of California, Davis

Contact the author*

Keywords

genome-enabled research, diploid genomes, chromosome-scale genome assembly, aroma genetics, domestication, flower sex determination, salt tolerance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.