terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Abstract

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids. These data indicate that the NADH/NADH+ cofactor regeneration is different among these species. We also observed that these species produce more erythritol, never described before as a by-product in S. cerevisiae. Using phylogenetic and genetic comparative approaches with Y. lipolytica erythrose reductases, we demonstrated that ΔGRE3 was the single mutant that decreased erythritol production.

Related to the ethanol yield, by whole genome comparative analysis, we have detected an ADH2 allele specific to the wine strains, derived from an ADH1ADH2 gene conversion. This allele results in a lower affinity for ethanol and a higher affinity for acetaldehyde and provides an advantage over other strains in wine fermentation.

Finally, we will explain how can we apply this knowledge to optimize the wine processes using digital twins.

Acknowledgements: PID2021-126380OB-C31 and PID2021-126380OB-C33, AGROALNEXT/2022/021, PLEC2021-007827; MCIN/AEI/10.13039/501100011033, as a ‘Severo Ochoa’ Center of Excellence (CEX2021-001189-S).

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Amparo Querol1*; Sonia Albillos 1; Romain Minebois1; Eva Balsa-Canto 3; Alba Contreras1, Lainy Ramirez-Aroca1; Eladio Barrio 1,2

1 Food Biotechnology Department (IATA-CSIC), Paterna, Spain
2 Genetics Department (University of Valencia), Valencia, Spain
3 Biosistemas e Ingeniería de Bioprocesos, IIM-CSIC, Vigo, Spain

Contact the author*

Keywords

Saccharomyces, wine fermentation, kinetic and genome-scale metabolic model; digital twin

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

How are canned wine drinkers perceived? An investigation involving Swiss nationals and different scenarios of outdoor leisure activities

This study examines how people who consume wine in cans are perceived in terms of their basic personality characteristics, helps understand the role of cultural background on people’s perception, and verify the role played by the consumption context on the perception. Our hypothesis is that prejudice and negative attitudes towards wine in cans might exert a negative effect on the evaluation of people who consume canned wine. To evaluate this hypothesis, the consumption of wine in cans was evoked in four different contexts of use during outdoor leisure activity (beach resort, ski resort, desert safari, and party). In order to examine the effect of culture on subject’s response we use participants from Switzerland, a country where three different cultures, associated with three different languages, cohabit.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).