terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Abstract

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids. These data indicate that the NADH/NADH+ cofactor regeneration is different among these species. We also observed that these species produce more erythritol, never described before as a by-product in S. cerevisiae. Using phylogenetic and genetic comparative approaches with Y. lipolytica erythrose reductases, we demonstrated that ΔGRE3 was the single mutant that decreased erythritol production.

Related to the ethanol yield, by whole genome comparative analysis, we have detected an ADH2 allele specific to the wine strains, derived from an ADH1ADH2 gene conversion. This allele results in a lower affinity for ethanol and a higher affinity for acetaldehyde and provides an advantage over other strains in wine fermentation.

Finally, we will explain how can we apply this knowledge to optimize the wine processes using digital twins.

Acknowledgements: PID2021-126380OB-C31 and PID2021-126380OB-C33, AGROALNEXT/2022/021, PLEC2021-007827; MCIN/AEI/10.13039/501100011033, as a ‘Severo Ochoa’ Center of Excellence (CEX2021-001189-S).

DOI:

Publication date: October 19, 2023

Issue: ICGWS 2023

Type: Article

Authors

Amparo Querol1*; Sonia Albillos 1; Romain Minebois1; Eva Balsa-Canto 3; Alba Contreras1, Lainy Ramirez-Aroca1; Eladio Barrio 1,2

1 Food Biotechnology Department (IATA-CSIC), Paterna, Spain
2 Genetics Department (University of Valencia), Valencia, Spain
3 Biosistemas e Ingeniería de Bioprocesos, IIM-CSIC, Vigo, Spain

Contact the author*

Keywords

Saccharomyces, wine fermentation, kinetic and genome-scale metabolic model; digital twin

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.