GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new pink “Early Elgo Demetra” variety. The seedless resistant grape variety “Early Elgo Demetra” was created by P. Zamanidis at the Athens Vine Department of the Institute of Olive and Subtropical Plants, in 2014.

Material and methods – The variety created by crossing with the hybridization method of the Russian resistant table variety “Talisman” with the newly Greek variety “Volga” (“Talisman” with a mixture of pollen “Perlet” and “Sultanina”). Created variety is a complex hybrid between dissimilar species of European, American and Far East (V. Amurensis). 

Results – The duration of the “Early Elgo Demetra” variety from budburst to maturity is 126-135 days. The variety is strong with very large shoots growth (2.1 – 3.0 m). The growth of shoots is higher over 95%. The shoot and the tip of the young shoot are green-colored and hairless. The yield is high more than 40 t / ha. The average weight of the cluster is 700 g. The content of sugar is high. The “Early Elgo Demetra” grape is large, conical, low density, with a long elliptical shape, pink color, with an average weight of until to 8 g, and has small pseudo-seed that are not understood in consumption. The mature leaf is medium size, symmetrical, and five sort lobs. The berry is sort elliptical with skin is thin and high resistance. The flesh has a pleasant taste. The grape is kept on for a long time. It is intended for edible use. It is kept for a long time in refrigerators and has excellent transport behavior. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera compared to other varieties of Vitis vinifera. Can be used in the genetic improvement of Vitis vinifera varieties as a resistance donor, for fungal diseases, insects and low temperature.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture,.Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

 Hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.
To maintain the socio-economic impact of this sector, new challenges need to be addressed.

Tracing glycosidically-bound smoke taint markers from grape to wine

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.