GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new pink “Early Elgo Demetra” variety. The seedless resistant grape variety “Early Elgo Demetra” was created by P. Zamanidis at the Athens Vine Department of the Institute of Olive and Subtropical Plants, in 2014.

Material and methods – The variety created by crossing with the hybridization method of the Russian resistant table variety “Talisman” with the newly Greek variety “Volga” (“Talisman” with a mixture of pollen “Perlet” and “Sultanina”). Created variety is a complex hybrid between dissimilar species of European, American and Far East (V. Amurensis). 

Results – The duration of the “Early Elgo Demetra” variety from budburst to maturity is 126-135 days. The variety is strong with very large shoots growth (2.1 – 3.0 m). The growth of shoots is higher over 95%. The shoot and the tip of the young shoot are green-colored and hairless. The yield is high more than 40 t / ha. The average weight of the cluster is 700 g. The content of sugar is high. The “Early Elgo Demetra” grape is large, conical, low density, with a long elliptical shape, pink color, with an average weight of until to 8 g, and has small pseudo-seed that are not understood in consumption. The mature leaf is medium size, symmetrical, and five sort lobs. The berry is sort elliptical with skin is thin and high resistance. The flesh has a pleasant taste. The grape is kept on for a long time. It is intended for edible use. It is kept for a long time in refrigerators and has excellent transport behavior. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera compared to other varieties of Vitis vinifera. Can be used in the genetic improvement of Vitis vinifera varieties as a resistance donor, for fungal diseases, insects and low temperature.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture,.Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

 Hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Teran grape quality influenced by different irrigation treatments

Teran is an important native variety grown in Istria known for its high level of polyphenols and intensive fruity character of wines. Teran’s yield and wine typicity have recently decreased due to climate changes (increased temperature and severe drought). Four drip irrigation treatments (25%, 50%, 75%, 100% of total evapotranspiration) and control were investigated for the influence on Teran yield and quality, where focus was given to the content and composition of main polyphenolic and volatile compounds in grapes. Irrigation positively influenced yield since the berry weight also increased with increased irrigation. This resulted in the highest yield for 100% ETc. The highest concentration of polyphenols had control, while the irrigation treatments did not differ significantly. However, there was a tendency to decrease concentration with increased irrigation probably due to the increased berry size, which led to a dilution effect. Regarding the volatile compounds, the most abundant group was alcohols, followed by acids.

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in