GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Abstract

Context and purpose of the study ‐ Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades and projected for the 21st century certainly result (or will result)in more water deficit stress for grapevine. Change in water availability throughout the season depends on the balance between precipitation and evapotranspiration. The latter is seldom assessed through potential evapotranspiration (ET0) calculated with empirical formulae relying on air temperature only. This study compares the changes in water availability estimates for viticulture using such formulae in comparison to the reference Penman‐ Monteith approach.

Material and methods – Monthly interpolated minimum and maximum temperature, precipitation and Penman‐Monteith (PM) ET0 data for land surfaces worldwide were collected from the CRU TS4.01 gridded dataset, from 1971 to 2017. Other ET0estimates were produced using the Thornthwaite (T) and the Hargreaves (H) temperature‐based as well as the Modified Hargreaves (M) temperature‐and‐ rainfall‐based methods. PM, T, H, M ET0 data were used to calculate the dryness index (DI), a monthly water balance‐based index for viticulture. Changes between the periods 1971‐2000 (HIST) and 2001‐ 2017 (PRES) in potential evapotranspiration and in DI were compared for each of the 4 ET0calculation methods. The changes were analyzed in wine producing regions using the vineyard geodatabase v1.2.3, a shapefile referencing 691 wine producing regions worldwide.

Results – All 4 methods compute an average increase (from HIST to PRES) in ET0 of about 20 mm during the grapevine growing season, i.e. April to September (October to March) for the northern (southern) hemisphere. The change (PRES ‐ HIST) differ substantially in space, according to the method used. For instance, a decrease in ET0 is shown in southwestern and central North America when using PM method, while T method indicates a weak to moderate raise in ET0 in these regions. Changes in dryness index th st from the late 20 to the early 21 century are large and highly variable in space: from ‐65 mm to +62 mm (0.05 and 0.95 percentiles), according to the location and to the ET0 calculation method. DI also strongly varies in space, but results are less sensitive to ET0 calculation method. PM shows a decrease in DI (PRES ‐ HIST) down to ‐75 mm in most regions but Australia, central Europe and Italy. While PM, H and M methods indicate a clear decrease of DI in France, Portugal and Spain, T method suggests an increase in DI in the northern part of France and in most of Spain. It is concluded that (1) ET0 has risen and contributed to DI decrease in many wine regions worldwide and (2) using T empirical method to derive ET0 from temperature can lead to different conclusions concerning changes in water availability for viticulture

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Benjamin BOIS

CRC,UMR Biogeosciences (6282 CNRS/uB), Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

potential evapotranspiration, viticulture, climate change, temperature‐based methods, dryness

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.

The effects of soil health management practices on soil organic carbon persistence and accrual in vineyards

Context and purpose of the study. Climate change is already threatening California vineyards, as they grapple with increasing extreme weather events and drier growing seasons.