GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Abstract

Context and purpose of the study ‐ Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades and projected for the 21st century certainly result (or will result)in more water deficit stress for grapevine. Change in water availability throughout the season depends on the balance between precipitation and evapotranspiration. The latter is seldom assessed through potential evapotranspiration (ET0) calculated with empirical formulae relying on air temperature only. This study compares the changes in water availability estimates for viticulture using such formulae in comparison to the reference Penman‐ Monteith approach.

Material and methods – Monthly interpolated minimum and maximum temperature, precipitation and Penman‐Monteith (PM) ET0 data for land surfaces worldwide were collected from the CRU TS4.01 gridded dataset, from 1971 to 2017. Other ET0estimates were produced using the Thornthwaite (T) and the Hargreaves (H) temperature‐based as well as the Modified Hargreaves (M) temperature‐and‐ rainfall‐based methods. PM, T, H, M ET0 data were used to calculate the dryness index (DI), a monthly water balance‐based index for viticulture. Changes between the periods 1971‐2000 (HIST) and 2001‐ 2017 (PRES) in potential evapotranspiration and in DI were compared for each of the 4 ET0calculation methods. The changes were analyzed in wine producing regions using the vineyard geodatabase v1.2.3, a shapefile referencing 691 wine producing regions worldwide.

Results – All 4 methods compute an average increase (from HIST to PRES) in ET0 of about 20 mm during the grapevine growing season, i.e. April to September (October to March) for the northern (southern) hemisphere. The change (PRES ‐ HIST) differ substantially in space, according to the method used. For instance, a decrease in ET0 is shown in southwestern and central North America when using PM method, while T method indicates a weak to moderate raise in ET0 in these regions. Changes in dryness index th st from the late 20 to the early 21 century are large and highly variable in space: from ‐65 mm to +62 mm (0.05 and 0.95 percentiles), according to the location and to the ET0 calculation method. DI also strongly varies in space, but results are less sensitive to ET0 calculation method. PM shows a decrease in DI (PRES ‐ HIST) down to ‐75 mm in most regions but Australia, central Europe and Italy. While PM, H and M methods indicate a clear decrease of DI in France, Portugal and Spain, T method suggests an increase in DI in the northern part of France and in most of Spain. It is concluded that (1) ET0 has risen and contributed to DI decrease in many wine regions worldwide and (2) using T empirical method to derive ET0 from temperature can lead to different conclusions concerning changes in water availability for viticulture

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Benjamin BOIS

CRC,UMR Biogeosciences (6282 CNRS/uB), Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

potential evapotranspiration, viticulture, climate change, temperature‐based methods, dryness

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.