GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Abstract

Context and purpose of the study ‐ Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades and projected for the 21st century certainly result (or will result)in more water deficit stress for grapevine. Change in water availability throughout the season depends on the balance between precipitation and evapotranspiration. The latter is seldom assessed through potential evapotranspiration (ET0) calculated with empirical formulae relying on air temperature only. This study compares the changes in water availability estimates for viticulture using such formulae in comparison to the reference Penman‐ Monteith approach.

Material and methods – Monthly interpolated minimum and maximum temperature, precipitation and Penman‐Monteith (PM) ET0 data for land surfaces worldwide were collected from the CRU TS4.01 gridded dataset, from 1971 to 2017. Other ET0estimates were produced using the Thornthwaite (T) and the Hargreaves (H) temperature‐based as well as the Modified Hargreaves (M) temperature‐and‐ rainfall‐based methods. PM, T, H, M ET0 data were used to calculate the dryness index (DI), a monthly water balance‐based index for viticulture. Changes between the periods 1971‐2000 (HIST) and 2001‐ 2017 (PRES) in potential evapotranspiration and in DI were compared for each of the 4 ET0calculation methods. The changes were analyzed in wine producing regions using the vineyard geodatabase v1.2.3, a shapefile referencing 691 wine producing regions worldwide.

Results – All 4 methods compute an average increase (from HIST to PRES) in ET0 of about 20 mm during the grapevine growing season, i.e. April to September (October to March) for the northern (southern) hemisphere. The change (PRES ‐ HIST) differ substantially in space, according to the method used. For instance, a decrease in ET0 is shown in southwestern and central North America when using PM method, while T method indicates a weak to moderate raise in ET0 in these regions. Changes in dryness index th st from the late 20 to the early 21 century are large and highly variable in space: from ‐65 mm to +62 mm (0.05 and 0.95 percentiles), according to the location and to the ET0 calculation method. DI also strongly varies in space, but results are less sensitive to ET0 calculation method. PM shows a decrease in DI (PRES ‐ HIST) down to ‐75 mm in most regions but Australia, central Europe and Italy. While PM, H and M methods indicate a clear decrease of DI in France, Portugal and Spain, T method suggests an increase in DI in the northern part of France and in most of Spain. It is concluded that (1) ET0 has risen and contributed to DI decrease in many wine regions worldwide and (2) using T empirical method to derive ET0 from temperature can lead to different conclusions concerning changes in water availability for viticulture

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Benjamin BOIS

CRC,UMR Biogeosciences (6282 CNRS/uB), Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

potential evapotranspiration, viticulture, climate change, temperature‐based methods, dryness

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

Exploring magnesium defficiency in Welschriesling grapevines: A multi-omics approach to address viticultural challenges

Magnesium (Mg) deficiency poses a significant challenge to viticulture, particularly affecting Welschriesling (WR), a key grape variety in Austrian and Central European vineyards.

Sensory and consumer perceptions, and consumption barriers of low and no-alcohol wines in Trentino/Alto Adige

The growing demand for non-alcoholic beverages, driven by health-conscious consumers and shifting social norms, has positioned dealcoholized wines as a promising alternative in the global beverage industry (Akhtar et al., 2025, in press; Kakroo, 2024).

Innovations on red winemaking process by ultrasound technology

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds.

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit