GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Impacts on water availability for vitiviniculture worldwide using different potential evapotranspiration methods

Abstract

Context and purpose of the study ‐ Beyond the sole warming globally perceived and monitored, climate change impacts water availability. Increasing heatwaves frequency observed during the last decades and projected for the 21st century certainly result (or will result)in more water deficit stress for grapevine. Change in water availability throughout the season depends on the balance between precipitation and evapotranspiration. The latter is seldom assessed through potential evapotranspiration (ET0) calculated with empirical formulae relying on air temperature only. This study compares the changes in water availability estimates for viticulture using such formulae in comparison to the reference Penman‐ Monteith approach.

Material and methods – Monthly interpolated minimum and maximum temperature, precipitation and Penman‐Monteith (PM) ET0 data for land surfaces worldwide were collected from the CRU TS4.01 gridded dataset, from 1971 to 2017. Other ET0estimates were produced using the Thornthwaite (T) and the Hargreaves (H) temperature‐based as well as the Modified Hargreaves (M) temperature‐and‐ rainfall‐based methods. PM, T, H, M ET0 data were used to calculate the dryness index (DI), a monthly water balance‐based index for viticulture. Changes between the periods 1971‐2000 (HIST) and 2001‐ 2017 (PRES) in potential evapotranspiration and in DI were compared for each of the 4 ET0calculation methods. The changes were analyzed in wine producing regions using the vineyard geodatabase v1.2.3, a shapefile referencing 691 wine producing regions worldwide.

Results – All 4 methods compute an average increase (from HIST to PRES) in ET0 of about 20 mm during the grapevine growing season, i.e. April to September (October to March) for the northern (southern) hemisphere. The change (PRES ‐ HIST) differ substantially in space, according to the method used. For instance, a decrease in ET0 is shown in southwestern and central North America when using PM method, while T method indicates a weak to moderate raise in ET0 in these regions. Changes in dryness index th st from the late 20 to the early 21 century are large and highly variable in space: from ‐65 mm to +62 mm (0.05 and 0.95 percentiles), according to the location and to the ET0 calculation method. DI also strongly varies in space, but results are less sensitive to ET0 calculation method. PM shows a decrease in DI (PRES ‐ HIST) down to ‐75 mm in most regions but Australia, central Europe and Italy. While PM, H and M methods indicate a clear decrease of DI in France, Portugal and Spain, T method suggests an increase in DI in the northern part of France and in most of Spain. It is concluded that (1) ET0 has risen and contributed to DI decrease in many wine regions worldwide and (2) using T empirical method to derive ET0 from temperature can lead to different conclusions concerning changes in water availability for viticulture

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Benjamin BOIS

CRC,UMR Biogeosciences (6282 CNRS/uB), Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

potential evapotranspiration, viticulture, climate change, temperature‐based methods, dryness

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.

Caractéristiques édaphiques et potentialités qualitatives des terroirs du vignoble languedocien

Dans le vignoble languedocien, les potentialités qualitatives des terroirs dépendent surtout de leurs caractéristiques édaphiques : la fertilité agronomique d’une part et sa nature géopédologique d’autre part.

Stomatal behaviour of three minority grapevine varieties grown in the La Mancha region (Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.