GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Sustaining grape production under challenging climate change circumstances

Sustaining grape production under challenging climate change circumstances

Abstract

Context and purpose of the study ‐ Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves due to the distinct th st seasonality. However, these events have worsened during the late 20 and early 21 centuries due to accelerated climate change and is expected to exacerbate with even more intensity and frequency in the foreseeable future. This unprecedented speed in climate change has spawned major scientific and viticultural challenges as grape berries particularly exhibit high sensitivities to heat waves during ripening, the key phenophase determining fruit quality, time of harvest, and eventually the economic viability of wine industry. Given that the projections of worsening heat wave events are an immediate concern to the high socio‐economic value of grapes, it is imperative that heat stress be curbed to ensure sustainability of grape production in a challenging environment. Therefore, the objective of this study was to mitigate the impact of heat waves by understanding the response of different grapevine cultivars to heat stress and various protective measures.

Material and methods – The experiment was conducted with field‐grown own‐rooted red and white cultivars. Individual clusters of these cultivars were enclosed using white paper bags and cheese cloth before veraison. Close to harvest, enclosed clusters as well as clusters that developed under ambient growing conditions (heat waves) were sampled and analyzed for primary and secondary metabolites.

Results – The berries of exposed clusters developed typical symptoms of sunburn, which included loss of crystalline structure of epicuticular wax resulting in a shiny surface. Such morphology was due to degradation and transitioning of wax platelets into amorphous masses creating a rough surface with poor development of color. However, the quercetin levels were higher than the enclosed clusters. The juice composition entailing Brix, pH, titratable acidity, content of malic and tartaric acids, sugars, and the levels of predominant mineral nutrient potassium, were compromised in sunburned berries. Furthermore, the response of various secondary metabolites such as tannins, polymeric anthocyanins, methoxypyrazines, guaiacal, and 4‐methylguaiacal varied among exposed (sunburn) and enclosed (protected by bags and cheese cloth) berries. Overall, the enclosed clusters developed with better fruit quality attributes suggesting that cluster enclosure could be an effective strategy to mitigate the ill effects of heat waves

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bhaskar BONDADA

Washington State University, Richland, WA 99354, USA

Contact the author

Keywords

 Climate change, Heat wave, Phenolics, Sugars, Sunburn

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]