GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Sustaining grape production under challenging climate change circumstances

Sustaining grape production under challenging climate change circumstances

Abstract

Context and purpose of the study ‐ Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves due to the distinct th st seasonality. However, these events have worsened during the late 20 and early 21 centuries due to accelerated climate change and is expected to exacerbate with even more intensity and frequency in the foreseeable future. This unprecedented speed in climate change has spawned major scientific and viticultural challenges as grape berries particularly exhibit high sensitivities to heat waves during ripening, the key phenophase determining fruit quality, time of harvest, and eventually the economic viability of wine industry. Given that the projections of worsening heat wave events are an immediate concern to the high socio‐economic value of grapes, it is imperative that heat stress be curbed to ensure sustainability of grape production in a challenging environment. Therefore, the objective of this study was to mitigate the impact of heat waves by understanding the response of different grapevine cultivars to heat stress and various protective measures.

Material and methods – The experiment was conducted with field‐grown own‐rooted red and white cultivars. Individual clusters of these cultivars were enclosed using white paper bags and cheese cloth before veraison. Close to harvest, enclosed clusters as well as clusters that developed under ambient growing conditions (heat waves) were sampled and analyzed for primary and secondary metabolites.

Results – The berries of exposed clusters developed typical symptoms of sunburn, which included loss of crystalline structure of epicuticular wax resulting in a shiny surface. Such morphology was due to degradation and transitioning of wax platelets into amorphous masses creating a rough surface with poor development of color. However, the quercetin levels were higher than the enclosed clusters. The juice composition entailing Brix, pH, titratable acidity, content of malic and tartaric acids, sugars, and the levels of predominant mineral nutrient potassium, were compromised in sunburned berries. Furthermore, the response of various secondary metabolites such as tannins, polymeric anthocyanins, methoxypyrazines, guaiacal, and 4‐methylguaiacal varied among exposed (sunburn) and enclosed (protected by bags and cheese cloth) berries. Overall, the enclosed clusters developed with better fruit quality attributes suggesting that cluster enclosure could be an effective strategy to mitigate the ill effects of heat waves

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bhaskar BONDADA

Washington State University, Richland, WA 99354, USA

Contact the author

Keywords

 Climate change, Heat wave, Phenolics, Sugars, Sunburn

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA.

Shoot positioning: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié durant deux saisons de croissance (2002/2003 et 2003/2004) l’effet de l’orientation vertical des rameaux sur les paramètres physiologiques, végétatifs et reproductifs dans la région de Stellenbosch dans un vignoble du cépage Merlot sur 99 R conduite à espalier et taillé a cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m. L’irrigation a été appliquée quand la baie avait la dimension d’un pois et a la véraison.

Increasing the capacity of change and adaptation of agri-food chain: the Agri-food CHIP project

The increasing vulnerability of food systems is a pressing challenge amplified by global interconnectedness.

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.