GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Sustaining grape production under challenging climate change circumstances

Sustaining grape production under challenging climate change circumstances

Abstract

Context and purpose of the study ‐ Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves due to the distinct th st seasonality. However, these events have worsened during the late 20 and early 21 centuries due to accelerated climate change and is expected to exacerbate with even more intensity and frequency in the foreseeable future. This unprecedented speed in climate change has spawned major scientific and viticultural challenges as grape berries particularly exhibit high sensitivities to heat waves during ripening, the key phenophase determining fruit quality, time of harvest, and eventually the economic viability of wine industry. Given that the projections of worsening heat wave events are an immediate concern to the high socio‐economic value of grapes, it is imperative that heat stress be curbed to ensure sustainability of grape production in a challenging environment. Therefore, the objective of this study was to mitigate the impact of heat waves by understanding the response of different grapevine cultivars to heat stress and various protective measures.

Material and methods – The experiment was conducted with field‐grown own‐rooted red and white cultivars. Individual clusters of these cultivars were enclosed using white paper bags and cheese cloth before veraison. Close to harvest, enclosed clusters as well as clusters that developed under ambient growing conditions (heat waves) were sampled and analyzed for primary and secondary metabolites.

Results – The berries of exposed clusters developed typical symptoms of sunburn, which included loss of crystalline structure of epicuticular wax resulting in a shiny surface. Such morphology was due to degradation and transitioning of wax platelets into amorphous masses creating a rough surface with poor development of color. However, the quercetin levels were higher than the enclosed clusters. The juice composition entailing Brix, pH, titratable acidity, content of malic and tartaric acids, sugars, and the levels of predominant mineral nutrient potassium, were compromised in sunburned berries. Furthermore, the response of various secondary metabolites such as tannins, polymeric anthocyanins, methoxypyrazines, guaiacal, and 4‐methylguaiacal varied among exposed (sunburn) and enclosed (protected by bags and cheese cloth) berries. Overall, the enclosed clusters developed with better fruit quality attributes suggesting that cluster enclosure could be an effective strategy to mitigate the ill effects of heat waves

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bhaskar BONDADA

Washington State University, Richland, WA 99354, USA

Contact the author

Keywords

 Climate change, Heat wave, Phenolics, Sugars, Sunburn

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Soil electrical resistivity, a new and revealing technique for precision viticulture

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.