GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Sustaining grape production under challenging climate change circumstances

Sustaining grape production under challenging climate change circumstances

Abstract

Context and purpose of the study ‐ Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves due to the distinct th st seasonality. However, these events have worsened during the late 20 and early 21 centuries due to accelerated climate change and is expected to exacerbate with even more intensity and frequency in the foreseeable future. This unprecedented speed in climate change has spawned major scientific and viticultural challenges as grape berries particularly exhibit high sensitivities to heat waves during ripening, the key phenophase determining fruit quality, time of harvest, and eventually the economic viability of wine industry. Given that the projections of worsening heat wave events are an immediate concern to the high socio‐economic value of grapes, it is imperative that heat stress be curbed to ensure sustainability of grape production in a challenging environment. Therefore, the objective of this study was to mitigate the impact of heat waves by understanding the response of different grapevine cultivars to heat stress and various protective measures.

Material and methods – The experiment was conducted with field‐grown own‐rooted red and white cultivars. Individual clusters of these cultivars were enclosed using white paper bags and cheese cloth before veraison. Close to harvest, enclosed clusters as well as clusters that developed under ambient growing conditions (heat waves) were sampled and analyzed for primary and secondary metabolites.

Results – The berries of exposed clusters developed typical symptoms of sunburn, which included loss of crystalline structure of epicuticular wax resulting in a shiny surface. Such morphology was due to degradation and transitioning of wax platelets into amorphous masses creating a rough surface with poor development of color. However, the quercetin levels were higher than the enclosed clusters. The juice composition entailing Brix, pH, titratable acidity, content of malic and tartaric acids, sugars, and the levels of predominant mineral nutrient potassium, were compromised in sunburned berries. Furthermore, the response of various secondary metabolites such as tannins, polymeric anthocyanins, methoxypyrazines, guaiacal, and 4‐methylguaiacal varied among exposed (sunburn) and enclosed (protected by bags and cheese cloth) berries. Overall, the enclosed clusters developed with better fruit quality attributes suggesting that cluster enclosure could be an effective strategy to mitigate the ill effects of heat waves

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Bhaskar BONDADA

Washington State University, Richland, WA 99354, USA

Contact the author

Keywords

 Climate change, Heat wave, Phenolics, Sugars, Sunburn

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.