terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular approaches for understanding and modulating wine taste

Molecular approaches for understanding and modulating wine taste

Abstract

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol (tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.
Indeed, polyphenols are usually associated with flavor, and particularly with astringency, due to their ability to complex with salivary proteins [1]. Saliva is rich in different SP families described to be involved in astringency, namely basic PRPs, glycosylated PRPs, acidic PRPs, statherin/P-B peptide and cystatins. However, due to saliva being a complex fluid, its protein profile may quantitatively and qualitatively vary under different conditions. Currently, astringency is recognized as a trigeminal sensation although the molecular pathway responsible for its onset is yet to be fully established. Moreover, it is unknown if the many different astringency mouthfeel sub-qualities such as velvet, puckering, harsh, among others, are perceived by different mechanisms. Besides the structural factors and medium conditions, there are some endogenous factors that affect astringency perception such as the physiological response, circadian rhythms, salivary flow rate and time of exposure. Indeed, astringency is perceived as a diffuse stimulus and dynamic process in the oral cavity that requires time to be elicited. It is known that astringency increases upon successive exposures to tannins [2,3].
Wine industry has some strategies to balance astringency and bitterness such as the use of some fining agents and also some winemaking practices (e.g. oak aging, batonnage and microoxygenations) leading to the loss of phenolics and also promoting the chemical change of some of them. While removing phenolic compounds is necessary to fulfill some organoleptic requirements of a beverage, the process must be controlled to avoid some collateral effects such as the loss of flavor [4]. Polysaccharides have been an emerging natural and sustainable option to be used on the modulation of taste properties. In fact, polysaccharides can influence salivary protein-tannin interactions and they could be used to modulate astringency and bitterness.

1. Soares, S., et al., Scientific Reports, 2020, 10, 12638.
2. Lesschaeve, I. and Noble, C. A., Am. J. Clin. Nutr, 2005, 81, 330S-5S.
3. Brand.o, E.; Soares, S.; Mateus, N.; de Freitas, V., J. Agri. Food Chem. 2014, 62, 9562−9568.
4. Francisco, T., et al., Food Res. Int., 2021, 143, 110261

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Victor de Freitas

University of Porto, Faculty of Science, Portugal.
LAQV-REQUIMTE

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.