terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular approaches for understanding and modulating wine taste

Molecular approaches for understanding and modulating wine taste

Abstract

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol (tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.
Indeed, polyphenols are usually associated with flavor, and particularly with astringency, due to their ability to complex with salivary proteins [1]. Saliva is rich in different SP families described to be involved in astringency, namely basic PRPs, glycosylated PRPs, acidic PRPs, statherin/P-B peptide and cystatins. However, due to saliva being a complex fluid, its protein profile may quantitatively and qualitatively vary under different conditions. Currently, astringency is recognized as a trigeminal sensation although the molecular pathway responsible for its onset is yet to be fully established. Moreover, it is unknown if the many different astringency mouthfeel sub-qualities such as velvet, puckering, harsh, among others, are perceived by different mechanisms. Besides the structural factors and medium conditions, there are some endogenous factors that affect astringency perception such as the physiological response, circadian rhythms, salivary flow rate and time of exposure. Indeed, astringency is perceived as a diffuse stimulus and dynamic process in the oral cavity that requires time to be elicited. It is known that astringency increases upon successive exposures to tannins [2,3].
Wine industry has some strategies to balance astringency and bitterness such as the use of some fining agents and also some winemaking practices (e.g. oak aging, batonnage and microoxygenations) leading to the loss of phenolics and also promoting the chemical change of some of them. While removing phenolic compounds is necessary to fulfill some organoleptic requirements of a beverage, the process must be controlled to avoid some collateral effects such as the loss of flavor [4]. Polysaccharides have been an emerging natural and sustainable option to be used on the modulation of taste properties. In fact, polysaccharides can influence salivary protein-tannin interactions and they could be used to modulate astringency and bitterness.

1. Soares, S., et al., Scientific Reports, 2020, 10, 12638.
2. Lesschaeve, I. and Noble, C. A., Am. J. Clin. Nutr, 2005, 81, 330S-5S.
3. Brand.o, E.; Soares, S.; Mateus, N.; de Freitas, V., J. Agri. Food Chem. 2014, 62, 9562−9568.
4. Francisco, T., et al., Food Res. Int., 2021, 143, 110261

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Victor de Freitas

University of Porto, Faculty of Science, Portugal.
LAQV-REQUIMTE

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.