terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular approaches for understanding and modulating wine taste

Molecular approaches for understanding and modulating wine taste

Abstract

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol (tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.
Indeed, polyphenols are usually associated with flavor, and particularly with astringency, due to their ability to complex with salivary proteins [1]. Saliva is rich in different SP families described to be involved in astringency, namely basic PRPs, glycosylated PRPs, acidic PRPs, statherin/P-B peptide and cystatins. However, due to saliva being a complex fluid, its protein profile may quantitatively and qualitatively vary under different conditions. Currently, astringency is recognized as a trigeminal sensation although the molecular pathway responsible for its onset is yet to be fully established. Moreover, it is unknown if the many different astringency mouthfeel sub-qualities such as velvet, puckering, harsh, among others, are perceived by different mechanisms. Besides the structural factors and medium conditions, there are some endogenous factors that affect astringency perception such as the physiological response, circadian rhythms, salivary flow rate and time of exposure. Indeed, astringency is perceived as a diffuse stimulus and dynamic process in the oral cavity that requires time to be elicited. It is known that astringency increases upon successive exposures to tannins [2,3].
Wine industry has some strategies to balance astringency and bitterness such as the use of some fining agents and also some winemaking practices (e.g. oak aging, batonnage and microoxygenations) leading to the loss of phenolics and also promoting the chemical change of some of them. While removing phenolic compounds is necessary to fulfill some organoleptic requirements of a beverage, the process must be controlled to avoid some collateral effects such as the loss of flavor [4]. Polysaccharides have been an emerging natural and sustainable option to be used on the modulation of taste properties. In fact, polysaccharides can influence salivary protein-tannin interactions and they could be used to modulate astringency and bitterness.

1. Soares, S., et al., Scientific Reports, 2020, 10, 12638.
2. Lesschaeve, I. and Noble, C. A., Am. J. Clin. Nutr, 2005, 81, 330S-5S.
3. Brand.o, E.; Soares, S.; Mateus, N.; de Freitas, V., J. Agri. Food Chem. 2014, 62, 9562−9568.
4. Francisco, T., et al., Food Res. Int., 2021, 143, 110261

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Victor de Freitas

University of Porto, Faculty of Science, Portugal.
LAQV-REQUIMTE

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.