terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular approaches for understanding and modulating wine taste

Molecular approaches for understanding and modulating wine taste

Abstract

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol (tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.
Indeed, polyphenols are usually associated with flavor, and particularly with astringency, due to their ability to complex with salivary proteins [1]. Saliva is rich in different SP families described to be involved in astringency, namely basic PRPs, glycosylated PRPs, acidic PRPs, statherin/P-B peptide and cystatins. However, due to saliva being a complex fluid, its protein profile may quantitatively and qualitatively vary under different conditions. Currently, astringency is recognized as a trigeminal sensation although the molecular pathway responsible for its onset is yet to be fully established. Moreover, it is unknown if the many different astringency mouthfeel sub-qualities such as velvet, puckering, harsh, among others, are perceived by different mechanisms. Besides the structural factors and medium conditions, there are some endogenous factors that affect astringency perception such as the physiological response, circadian rhythms, salivary flow rate and time of exposure. Indeed, astringency is perceived as a diffuse stimulus and dynamic process in the oral cavity that requires time to be elicited. It is known that astringency increases upon successive exposures to tannins [2,3].
Wine industry has some strategies to balance astringency and bitterness such as the use of some fining agents and also some winemaking practices (e.g. oak aging, batonnage and microoxygenations) leading to the loss of phenolics and also promoting the chemical change of some of them. While removing phenolic compounds is necessary to fulfill some organoleptic requirements of a beverage, the process must be controlled to avoid some collateral effects such as the loss of flavor [4]. Polysaccharides have been an emerging natural and sustainable option to be used on the modulation of taste properties. In fact, polysaccharides can influence salivary protein-tannin interactions and they could be used to modulate astringency and bitterness.

1. Soares, S., et al., Scientific Reports, 2020, 10, 12638.
2. Lesschaeve, I. and Noble, C. A., Am. J. Clin. Nutr, 2005, 81, 330S-5S.
3. Brand.o, E.; Soares, S.; Mateus, N.; de Freitas, V., J. Agri. Food Chem. 2014, 62, 9562−9568.
4. Francisco, T., et al., Food Res. Int., 2021, 143, 110261

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Victor de Freitas

University of Porto, Faculty of Science, Portugal.
LAQV-REQUIMTE

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.