terclim by ICS banner
IVES 9 IVES Conference Series 9 Molecular approaches for understanding and modulating wine taste

Molecular approaches for understanding and modulating wine taste

Abstract

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol (tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.
Indeed, polyphenols are usually associated with flavor, and particularly with astringency, due to their ability to complex with salivary proteins [1]. Saliva is rich in different SP families described to be involved in astringency, namely basic PRPs, glycosylated PRPs, acidic PRPs, statherin/P-B peptide and cystatins. However, due to saliva being a complex fluid, its protein profile may quantitatively and qualitatively vary under different conditions. Currently, astringency is recognized as a trigeminal sensation although the molecular pathway responsible for its onset is yet to be fully established. Moreover, it is unknown if the many different astringency mouthfeel sub-qualities such as velvet, puckering, harsh, among others, are perceived by different mechanisms. Besides the structural factors and medium conditions, there are some endogenous factors that affect astringency perception such as the physiological response, circadian rhythms, salivary flow rate and time of exposure. Indeed, astringency is perceived as a diffuse stimulus and dynamic process in the oral cavity that requires time to be elicited. It is known that astringency increases upon successive exposures to tannins [2,3].
Wine industry has some strategies to balance astringency and bitterness such as the use of some fining agents and also some winemaking practices (e.g. oak aging, batonnage and microoxygenations) leading to the loss of phenolics and also promoting the chemical change of some of them. While removing phenolic compounds is necessary to fulfill some organoleptic requirements of a beverage, the process must be controlled to avoid some collateral effects such as the loss of flavor [4]. Polysaccharides have been an emerging natural and sustainable option to be used on the modulation of taste properties. In fact, polysaccharides can influence salivary protein-tannin interactions and they could be used to modulate astringency and bitterness.

1. Soares, S., et al., Scientific Reports, 2020, 10, 12638.
2. Lesschaeve, I. and Noble, C. A., Am. J. Clin. Nutr, 2005, 81, 330S-5S.
3. Brand.o, E.; Soares, S.; Mateus, N.; de Freitas, V., J. Agri. Food Chem. 2014, 62, 9562−9568.
4. Francisco, T., et al., Food Res. Int., 2021, 143, 110261

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Victor de Freitas

University of Porto, Faculty of Science, Portugal.
LAQV-REQUIMTE

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.