terclim by ICS banner
IVES 9 IVES Conference Series 9 Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Abstract

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray. The spray was applied to the top of the vine canopy for 15 minutes per hour during 12 daylight hours over the course of heat waves occurring between veraison and harvest. Heatwaves were defined as days with a minimum temperature of no less than 21 ⁰C and a maximum temperature of no less than 34 ⁰C. Two heat waves were identified over the course of the growing season. Temperature was measured at the canopy level (CT) while a weather station provided multiple climate parameters of the vineyard (VT). Samples were collected at weekly intervals from veraison to harvest. During 5 sample dates Leaf and Stem Water Potential (LWP, SWP), Stomatal Conductance (SC), Leaf Temperature (LT), Berry Temperature (BT), Chlorophyll Content (CC), Fluorescence (FV/FM), and Performance Index (PI) were collected at several intervals during the day to evaluate physiological responses. Berries were collected at each sample date as well as at harvest. Berry weights, soluble solids content, and pH were measured. At harvest, anthocyanin profile, kg/plant, number of bunches and their average weight were also evaluated. LWP, SWP, FV/FM, PI, SC, CC, Kg/plant, and BW, were significantly higher while LT, BT, and CT were lower in treated vines as compared to the control during the second heatwave, which was longer and more intense than the first one. One week after the more severe heatwave, LWP, SWP and SC were still significantly different between treatment and control, displaying reduced physiological stress in the treated vines. No differences were identified in the sum of total anthocyanins. However, some individual anthocyanins were higher in treated vines. These results suggest that vines with the overhead water treatment during heat waves had reduced physiological stress and increased yield. As a consequence, this practice could be used as a mitigating tool to reduce the impact of heat waves.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alena Wilson³, Marta Dizy², Deolindo Dominguez¹, Maria Inés de Rosas¹, Jesica Baldo⁴, Raquel Gargantini⁴, Leonor Deis¹, Liliana Martinez¹*

¹ Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Mendoza, Argentina.
² Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas, Gobierno
de La Rioja), Finca La Grajera, ctra. de Burgos km 6, 26007 Logroño, La Rioja, Spain.
³ Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco,
Italy.
⁴ Instituto Nacional de Vitivinicultura, Av. San Martin 430, Ciudad, Mendoza, Argentina.

Contact the author*

Keywords

red-blended-wine , molecular marker , Aroma compound , Sensorial attribute

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).