terclim by ICS banner
IVES 9 IVES Conference Series 9 Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Abstract

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray. The spray was applied to the top of the vine canopy for 15 minutes per hour during 12 daylight hours over the course of heat waves occurring between veraison and harvest. Heatwaves were defined as days with a minimum temperature of no less than 21 ⁰C and a maximum temperature of no less than 34 ⁰C. Two heat waves were identified over the course of the growing season. Temperature was measured at the canopy level (CT) while a weather station provided multiple climate parameters of the vineyard (VT). Samples were collected at weekly intervals from veraison to harvest. During 5 sample dates Leaf and Stem Water Potential (LWP, SWP), Stomatal Conductance (SC), Leaf Temperature (LT), Berry Temperature (BT), Chlorophyll Content (CC), Fluorescence (FV/FM), and Performance Index (PI) were collected at several intervals during the day to evaluate physiological responses. Berries were collected at each sample date as well as at harvest. Berry weights, soluble solids content, and pH were measured. At harvest, anthocyanin profile, kg/plant, number of bunches and their average weight were also evaluated. LWP, SWP, FV/FM, PI, SC, CC, Kg/plant, and BW, were significantly higher while LT, BT, and CT were lower in treated vines as compared to the control during the second heatwave, which was longer and more intense than the first one. One week after the more severe heatwave, LWP, SWP and SC were still significantly different between treatment and control, displaying reduced physiological stress in the treated vines. No differences were identified in the sum of total anthocyanins. However, some individual anthocyanins were higher in treated vines. These results suggest that vines with the overhead water treatment during heat waves had reduced physiological stress and increased yield. As a consequence, this practice could be used as a mitigating tool to reduce the impact of heat waves.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alena Wilson³, Marta Dizy², Deolindo Dominguez¹, Maria Inés de Rosas¹, Jesica Baldo⁴, Raquel Gargantini⁴, Leonor Deis¹, Liliana Martinez¹*

¹ Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, 5505 Chacras de Coria, Mendoza, Argentina.
² Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas, Gobierno
de La Rioja), Finca La Grajera, ctra. de Burgos km 6, 26007 Logroño, La Rioja, Spain.
³ Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco,
Italy.
⁴ Instituto Nacional de Vitivinicultura, Av. San Martin 430, Ciudad, Mendoza, Argentina.

Contact the author*

Keywords

red-blended-wine , molecular marker , Aroma compound , Sensorial attribute

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.