terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Abstract

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the negative impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grapevine metabolism to altered water balance and salinity is of pivotal importance. Hence, we used cv. Syrah grafted on rootstocks 1103 Paulsen and SO4, under a set of combinations of salinity (0.5 and 2.5 dS m-1) and differential irrigation levels (66%, 100% and 133% of the local recommended irrigation amount) in an experimental vineyard located on Sede Boqer, Israel at 30051’22.37” N and 34046’52.98” E with an elevation of 480 m.a.s.l. SO4 grafts generally produced a higher yield than 1103Paulsen grafts, while accumulating more Cl- ions in wine and leaves. These results may suggest different salt exclusion potentials. Spectrophotometric readings showed that high salinity with deficit irrigation increased tannins and reduced carotenoid content in the berries. In addition, a lower fluorescence and photosystem efficiency under stress were recorded in 1103 Paulsen vines. GC-MS-based profiling of central metabolism showed the accumulation of major sugars and amino acids. For example, under salinity stress, proline and alanine relative content increased while lysine, valine, and leucine content decreased irrespectively of the rootstock. Grafts of 1103 Paulsen showed greater accumulation of N-compounds being pyroglutamate, leucine, valine, ethanolamine, sugars including xylose and trehalose, and few other metabolites (cinnamate, lactate, and galactarate) when compared to SO4 grafts. Altogether, our results show multi-level differences in Syrah metabolism and physiology due to the rootstock mediation of salinity and water deficit combined stress.

1. Arias, L.A., Berli, F., Fontana, A., Bottini, R., Piccoli, P., 2022. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 13, 835425. https://doi.org/10.3389/FPLS.2022.835425
2. Balfagón, D., Rambla, J.L., Granell, A., Arbona, V., Gómez-Cadenas, A., 2022. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 195, 104793. https://doi.org/10.1016/J.ENVEX-PBOT.2022.104793
3. Lupo, Y., Schlisser, A., Dong, S., Rachmilevitch, S., Fait, A., Lazarovitch, N., 2022. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. Plant Sci. 325, 111460. https://doi.org/10.1016/J.PLANTS-CI.2022.111460
4. Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 11, 1750. https://doi.org/10.3389/FPLS.2020.591911/BIBTEX
5. Martínez-Moreno, A., Pérez-álvarez, E.P., López-Urrea, R., Intrigliolo, D.S., González-Centeno, M.R., Teissedre, P.L., Gil-Muñoz, R., 2022. Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas? OENO One 56, 101–116. https://doi.org/10.20870/OENO-ONE.2022.56.1.4910

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kidanemaryam Reta¹; Tania Acuña²; Yaniv Lupo¹; Noga Sikron²; Naftali Lazarovitch³; Aaron Fait*²

1 Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2 Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
3 Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

combined stress, grafts, physiology, metabolite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.