terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Abstract

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the negative impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grapevine metabolism to altered water balance and salinity is of pivotal importance. Hence, we used cv. Syrah grafted on rootstocks 1103 Paulsen and SO4, under a set of combinations of salinity (0.5 and 2.5 dS m-1) and differential irrigation levels (66%, 100% and 133% of the local recommended irrigation amount) in an experimental vineyard located on Sede Boqer, Israel at 30051’22.37” N and 34046’52.98” E with an elevation of 480 m.a.s.l. SO4 grafts generally produced a higher yield than 1103Paulsen grafts, while accumulating more Cl- ions in wine and leaves. These results may suggest different salt exclusion potentials. Spectrophotometric readings showed that high salinity with deficit irrigation increased tannins and reduced carotenoid content in the berries. In addition, a lower fluorescence and photosystem efficiency under stress were recorded in 1103 Paulsen vines. GC-MS-based profiling of central metabolism showed the accumulation of major sugars and amino acids. For example, under salinity stress, proline and alanine relative content increased while lysine, valine, and leucine content decreased irrespectively of the rootstock. Grafts of 1103 Paulsen showed greater accumulation of N-compounds being pyroglutamate, leucine, valine, ethanolamine, sugars including xylose and trehalose, and few other metabolites (cinnamate, lactate, and galactarate) when compared to SO4 grafts. Altogether, our results show multi-level differences in Syrah metabolism and physiology due to the rootstock mediation of salinity and water deficit combined stress.

1. Arias, L.A., Berli, F., Fontana, A., Bottini, R., Piccoli, P., 2022. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 13, 835425. https://doi.org/10.3389/FPLS.2022.835425
2. Balfagón, D., Rambla, J.L., Granell, A., Arbona, V., Gómez-Cadenas, A., 2022. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 195, 104793. https://doi.org/10.1016/J.ENVEX-PBOT.2022.104793
3. Lupo, Y., Schlisser, A., Dong, S., Rachmilevitch, S., Fait, A., Lazarovitch, N., 2022. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. Plant Sci. 325, 111460. https://doi.org/10.1016/J.PLANTS-CI.2022.111460
4. Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 11, 1750. https://doi.org/10.3389/FPLS.2020.591911/BIBTEX
5. Martínez-Moreno, A., Pérez-álvarez, E.P., López-Urrea, R., Intrigliolo, D.S., González-Centeno, M.R., Teissedre, P.L., Gil-Muñoz, R., 2022. Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas? OENO One 56, 101–116. https://doi.org/10.20870/OENO-ONE.2022.56.1.4910

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kidanemaryam Reta¹; Tania Acuña²; Yaniv Lupo¹; Noga Sikron²; Naftali Lazarovitch³; Aaron Fait*²

1 Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2 Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
3 Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

combined stress, grafts, physiology, metabolite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.