terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Abstract

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the negative impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grapevine metabolism to altered water balance and salinity is of pivotal importance. Hence, we used cv. Syrah grafted on rootstocks 1103 Paulsen and SO4, under a set of combinations of salinity (0.5 and 2.5 dS m-1) and differential irrigation levels (66%, 100% and 133% of the local recommended irrigation amount) in an experimental vineyard located on Sede Boqer, Israel at 30051’22.37” N and 34046’52.98” E with an elevation of 480 m.a.s.l. SO4 grafts generally produced a higher yield than 1103Paulsen grafts, while accumulating more Cl- ions in wine and leaves. These results may suggest different salt exclusion potentials. Spectrophotometric readings showed that high salinity with deficit irrigation increased tannins and reduced carotenoid content in the berries. In addition, a lower fluorescence and photosystem efficiency under stress were recorded in 1103 Paulsen vines. GC-MS-based profiling of central metabolism showed the accumulation of major sugars and amino acids. For example, under salinity stress, proline and alanine relative content increased while lysine, valine, and leucine content decreased irrespectively of the rootstock. Grafts of 1103 Paulsen showed greater accumulation of N-compounds being pyroglutamate, leucine, valine, ethanolamine, sugars including xylose and trehalose, and few other metabolites (cinnamate, lactate, and galactarate) when compared to SO4 grafts. Altogether, our results show multi-level differences in Syrah metabolism and physiology due to the rootstock mediation of salinity and water deficit combined stress.

1. Arias, L.A., Berli, F., Fontana, A., Bottini, R., Piccoli, P., 2022. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 13, 835425. https://doi.org/10.3389/FPLS.2022.835425
2. Balfagón, D., Rambla, J.L., Granell, A., Arbona, V., Gómez-Cadenas, A., 2022. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 195, 104793. https://doi.org/10.1016/J.ENVEX-PBOT.2022.104793
3. Lupo, Y., Schlisser, A., Dong, S., Rachmilevitch, S., Fait, A., Lazarovitch, N., 2022. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. Plant Sci. 325, 111460. https://doi.org/10.1016/J.PLANTS-CI.2022.111460
4. Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 11, 1750. https://doi.org/10.3389/FPLS.2020.591911/BIBTEX
5. Martínez-Moreno, A., Pérez-álvarez, E.P., López-Urrea, R., Intrigliolo, D.S., González-Centeno, M.R., Teissedre, P.L., Gil-Muñoz, R., 2022. Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas? OENO One 56, 101–116. https://doi.org/10.20870/OENO-ONE.2022.56.1.4910

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kidanemaryam Reta¹; Tania Acuña²; Yaniv Lupo¹; Noga Sikron²; Naftali Lazarovitch³; Aaron Fait*²

1 Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2 Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
3 Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

combined stress, grafts, physiology, metabolite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.