terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Abstract

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the negative impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grapevine metabolism to altered water balance and salinity is of pivotal importance. Hence, we used cv. Syrah grafted on rootstocks 1103 Paulsen and SO4, under a set of combinations of salinity (0.5 and 2.5 dS m-1) and differential irrigation levels (66%, 100% and 133% of the local recommended irrigation amount) in an experimental vineyard located on Sede Boqer, Israel at 30051’22.37” N and 34046’52.98” E with an elevation of 480 m.a.s.l. SO4 grafts generally produced a higher yield than 1103Paulsen grafts, while accumulating more Cl- ions in wine and leaves. These results may suggest different salt exclusion potentials. Spectrophotometric readings showed that high salinity with deficit irrigation increased tannins and reduced carotenoid content in the berries. In addition, a lower fluorescence and photosystem efficiency under stress were recorded in 1103 Paulsen vines. GC-MS-based profiling of central metabolism showed the accumulation of major sugars and amino acids. For example, under salinity stress, proline and alanine relative content increased while lysine, valine, and leucine content decreased irrespectively of the rootstock. Grafts of 1103 Paulsen showed greater accumulation of N-compounds being pyroglutamate, leucine, valine, ethanolamine, sugars including xylose and trehalose, and few other metabolites (cinnamate, lactate, and galactarate) when compared to SO4 grafts. Altogether, our results show multi-level differences in Syrah metabolism and physiology due to the rootstock mediation of salinity and water deficit combined stress.

1. Arias, L.A., Berli, F., Fontana, A., Bottini, R., Piccoli, P., 2022. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 13, 835425. https://doi.org/10.3389/FPLS.2022.835425
2. Balfagón, D., Rambla, J.L., Granell, A., Arbona, V., Gómez-Cadenas, A., 2022. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 195, 104793. https://doi.org/10.1016/J.ENVEX-PBOT.2022.104793
3. Lupo, Y., Schlisser, A., Dong, S., Rachmilevitch, S., Fait, A., Lazarovitch, N., 2022. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. Plant Sci. 325, 111460. https://doi.org/10.1016/J.PLANTS-CI.2022.111460
4. Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 11, 1750. https://doi.org/10.3389/FPLS.2020.591911/BIBTEX
5. Martínez-Moreno, A., Pérez-álvarez, E.P., López-Urrea, R., Intrigliolo, D.S., González-Centeno, M.R., Teissedre, P.L., Gil-Muñoz, R., 2022. Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas? OENO One 56, 101–116. https://doi.org/10.20870/OENO-ONE.2022.56.1.4910

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kidanemaryam Reta¹; Tania Acuña²; Yaniv Lupo¹; Noga Sikron²; Naftali Lazarovitch³; Aaron Fait*²

1 Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2 Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
3 Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

combined stress, grafts, physiology, metabolite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.