terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Abstract

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the negative impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grapevine metabolism to altered water balance and salinity is of pivotal importance. Hence, we used cv. Syrah grafted on rootstocks 1103 Paulsen and SO4, under a set of combinations of salinity (0.5 and 2.5 dS m-1) and differential irrigation levels (66%, 100% and 133% of the local recommended irrigation amount) in an experimental vineyard located on Sede Boqer, Israel at 30051’22.37” N and 34046’52.98” E with an elevation of 480 m.a.s.l. SO4 grafts generally produced a higher yield than 1103Paulsen grafts, while accumulating more Cl- ions in wine and leaves. These results may suggest different salt exclusion potentials. Spectrophotometric readings showed that high salinity with deficit irrigation increased tannins and reduced carotenoid content in the berries. In addition, a lower fluorescence and photosystem efficiency under stress were recorded in 1103 Paulsen vines. GC-MS-based profiling of central metabolism showed the accumulation of major sugars and amino acids. For example, under salinity stress, proline and alanine relative content increased while lysine, valine, and leucine content decreased irrespectively of the rootstock. Grafts of 1103 Paulsen showed greater accumulation of N-compounds being pyroglutamate, leucine, valine, ethanolamine, sugars including xylose and trehalose, and few other metabolites (cinnamate, lactate, and galactarate) when compared to SO4 grafts. Altogether, our results show multi-level differences in Syrah metabolism and physiology due to the rootstock mediation of salinity and water deficit combined stress.

1. Arias, L.A., Berli, F., Fontana, A., Bottini, R., Piccoli, P., 2022. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 13, 835425. https://doi.org/10.3389/FPLS.2022.835425
2. Balfagón, D., Rambla, J.L., Granell, A., Arbona, V., Gómez-Cadenas, A., 2022. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 195, 104793. https://doi.org/10.1016/J.ENVEX-PBOT.2022.104793
3. Lupo, Y., Schlisser, A., Dong, S., Rachmilevitch, S., Fait, A., Lazarovitch, N., 2022. Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion. Plant Sci. 325, 111460. https://doi.org/10.1016/J.PLANTS-CI.2022.111460
4. Ma, Y., Dias, M.C., Freitas, H., 2020. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 11, 1750. https://doi.org/10.3389/FPLS.2020.591911/BIBTEX
5. Martínez-Moreno, A., Pérez-álvarez, E.P., López-Urrea, R., Intrigliolo, D.S., González-Centeno, M.R., Teissedre, P.L., Gil-Muñoz, R., 2022. Is deficit irrigation with saline waters a viable alternative for winegrowers in semiarid areas? OENO One 56, 101–116. https://doi.org/10.20870/OENO-ONE.2022.56.1.4910

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kidanemaryam Reta¹; Tania Acuña²; Yaniv Lupo¹; Noga Sikron²; Naftali Lazarovitch³; Aaron Fait*²

1 Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2 Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
3 Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

combined stress, grafts, physiology, metabolite

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.