terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Abstract

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fun- gicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidi- mensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature). In addition, P. guilliermondii ZIM 624 possessed interesting enological traits, did not produce off-flavor related H2S and appeared as β-lyase and β-glucosidase producer.

Accordingly, the aim of this researsch was to study the antifungal mechanisms by assessing the volatiles produced by P. guilliermondii ZIM624. Namely, a study was conducted to identify volatile organic com- pounds (4 higher alcohols, 6 volatile phenols, 23 esters and 27 terpenes) produced by antagonistic Pichia guilliermondii strain ZIM624 and to determine the efficacy of the chosen volatiles of P. guilliermondii in suppression of B. cinerea growth and control of Botrytis fruit rot of grape berries. Thereby, a comprehensive assessment of produced volatiles in the process of wine production was achieved using two validated analytical methods (one for terpenes and one for the rest of mentioned volatiles) comprised of automated headspace (HS) solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometric detection (GC-MS). Both methods were developed based on already published me- thod for determionation of volatiles in wine samples [2]. Among identified volatiles, 13 yeast-produced volatiles were selected and their antifungal activity was tested against B. cinerea in the fumigation bioassay. Terpenes citronellol, geraniol, nerol, α-terpineol and linalool were the most effective against B. cinerea mycelium growth with the EC50 beetwen 6,6 to 32,8 μL/L. 4-Vinyl phenol and isoamyl ace- tate also effectively inhibited mycelial growth of B. cinerea, EC50 being 48,6 and 63,3 μL/L, respectively, followed by eucalyptol (EC50 201,6 μL/L) and ethyl butyrate (EC50 238,4 μL/L). 4-Vinyl guaiacol did not show any inhibitory effect, while the remaining tested compounds showed inhibition against B. cinerea growth, however we were not able to determine EC50 with the selected concentration ranges. Additio- naly, exposure of B. cinerea-infected grape berries to the volatiles from P. guilliermondii cultures also lowered the number of infected grape berries, when applied to in vivo assay.

Herein presented novel research approach strongly suggests that yeast produced volatiles such as ter- penes, volatile phenols and esters are one of the possible mechanisms for controlling Botrytis rot of fruit and promising biofumigants.

1. Adesida R. 2022. Exploration of yeast biodiversity potential for development of alternative biofungicides in viticulture : dissertation. University of Nova Gorica.
2. Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; Revel,, G.; Schmidtke, L. M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. (2015), J Agric Food Chem 63(41): 9103-11

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mitja Martelanc1, Lenart Žežlina2, Tatjana Radovanović Vukajlović1, Melita Sternad Lemut1, Lorena Butinar1

1. University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2. University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia

Contact the author*

Keywords

volatile organic compounds, HS-SPME-GC-MS, biocontrol, Botrytis cinerea

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.