terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Abstract

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fun- gicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidi- mensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature). In addition, P. guilliermondii ZIM 624 possessed interesting enological traits, did not produce off-flavor related H2S and appeared as β-lyase and β-glucosidase producer.

Accordingly, the aim of this researsch was to study the antifungal mechanisms by assessing the volatiles produced by P. guilliermondii ZIM624. Namely, a study was conducted to identify volatile organic com- pounds (4 higher alcohols, 6 volatile phenols, 23 esters and 27 terpenes) produced by antagonistic Pichia guilliermondii strain ZIM624 and to determine the efficacy of the chosen volatiles of P. guilliermondii in suppression of B. cinerea growth and control of Botrytis fruit rot of grape berries. Thereby, a comprehensive assessment of produced volatiles in the process of wine production was achieved using two validated analytical methods (one for terpenes and one for the rest of mentioned volatiles) comprised of automated headspace (HS) solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometric detection (GC-MS). Both methods were developed based on already published me- thod for determionation of volatiles in wine samples [2]. Among identified volatiles, 13 yeast-produced volatiles were selected and their antifungal activity was tested against B. cinerea in the fumigation bioassay. Terpenes citronellol, geraniol, nerol, α-terpineol and linalool were the most effective against B. cinerea mycelium growth with the EC50 beetwen 6,6 to 32,8 μL/L. 4-Vinyl phenol and isoamyl ace- tate also effectively inhibited mycelial growth of B. cinerea, EC50 being 48,6 and 63,3 μL/L, respectively, followed by eucalyptol (EC50 201,6 μL/L) and ethyl butyrate (EC50 238,4 μL/L). 4-Vinyl guaiacol did not show any inhibitory effect, while the remaining tested compounds showed inhibition against B. cinerea growth, however we were not able to determine EC50 with the selected concentration ranges. Additio- naly, exposure of B. cinerea-infected grape berries to the volatiles from P. guilliermondii cultures also lowered the number of infected grape berries, when applied to in vivo assay.

Herein presented novel research approach strongly suggests that yeast produced volatiles such as ter- penes, volatile phenols and esters are one of the possible mechanisms for controlling Botrytis rot of fruit and promising biofumigants.

1. Adesida R. 2022. Exploration of yeast biodiversity potential for development of alternative biofungicides in viticulture : dissertation. University of Nova Gorica.
2. Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; Revel,, G.; Schmidtke, L. M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. (2015), J Agric Food Chem 63(41): 9103-11

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mitja Martelanc1, Lenart Žežlina2, Tatjana Radovanović Vukajlović1, Melita Sternad Lemut1, Lorena Butinar1

1. University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2. University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia

Contact the author*

Keywords

volatile organic compounds, HS-SPME-GC-MS, biocontrol, Botrytis cinerea

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵