terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Abstract

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fun- gicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidi- mensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature). In addition, P. guilliermondii ZIM 624 possessed interesting enological traits, did not produce off-flavor related H2S and appeared as β-lyase and β-glucosidase producer.

Accordingly, the aim of this researsch was to study the antifungal mechanisms by assessing the volatiles produced by P. guilliermondii ZIM624. Namely, a study was conducted to identify volatile organic com- pounds (4 higher alcohols, 6 volatile phenols, 23 esters and 27 terpenes) produced by antagonistic Pichia guilliermondii strain ZIM624 and to determine the efficacy of the chosen volatiles of P. guilliermondii in suppression of B. cinerea growth and control of Botrytis fruit rot of grape berries. Thereby, a comprehensive assessment of produced volatiles in the process of wine production was achieved using two validated analytical methods (one for terpenes and one for the rest of mentioned volatiles) comprised of automated headspace (HS) solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometric detection (GC-MS). Both methods were developed based on already published me- thod for determionation of volatiles in wine samples [2]. Among identified volatiles, 13 yeast-produced volatiles were selected and their antifungal activity was tested against B. cinerea in the fumigation bioassay. Terpenes citronellol, geraniol, nerol, α-terpineol and linalool were the most effective against B. cinerea mycelium growth with the EC50 beetwen 6,6 to 32,8 μL/L. 4-Vinyl phenol and isoamyl ace- tate also effectively inhibited mycelial growth of B. cinerea, EC50 being 48,6 and 63,3 μL/L, respectively, followed by eucalyptol (EC50 201,6 μL/L) and ethyl butyrate (EC50 238,4 μL/L). 4-Vinyl guaiacol did not show any inhibitory effect, while the remaining tested compounds showed inhibition against B. cinerea growth, however we were not able to determine EC50 with the selected concentration ranges. Additio- naly, exposure of B. cinerea-infected grape berries to the volatiles from P. guilliermondii cultures also lowered the number of infected grape berries, when applied to in vivo assay.

Herein presented novel research approach strongly suggests that yeast produced volatiles such as ter- penes, volatile phenols and esters are one of the possible mechanisms for controlling Botrytis rot of fruit and promising biofumigants.

1. Adesida R. 2022. Exploration of yeast biodiversity potential for development of alternative biofungicides in viticulture : dissertation. University of Nova Gorica.
2. Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; Revel,, G.; Schmidtke, L. M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. (2015), J Agric Food Chem 63(41): 9103-11

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mitja Martelanc1, Lenart Žežlina2, Tatjana Radovanović Vukajlović1, Melita Sternad Lemut1, Lorena Butinar1

1. University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2. University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia

Contact the author*

Keywords

volatile organic compounds, HS-SPME-GC-MS, biocontrol, Botrytis cinerea

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.