terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Abstract

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fun- gicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidi- mensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature). In addition, P. guilliermondii ZIM 624 possessed interesting enological traits, did not produce off-flavor related H2S and appeared as β-lyase and β-glucosidase producer.

Accordingly, the aim of this researsch was to study the antifungal mechanisms by assessing the volatiles produced by P. guilliermondii ZIM624. Namely, a study was conducted to identify volatile organic com- pounds (4 higher alcohols, 6 volatile phenols, 23 esters and 27 terpenes) produced by antagonistic Pichia guilliermondii strain ZIM624 and to determine the efficacy of the chosen volatiles of P. guilliermondii in suppression of B. cinerea growth and control of Botrytis fruit rot of grape berries. Thereby, a comprehensive assessment of produced volatiles in the process of wine production was achieved using two validated analytical methods (one for terpenes and one for the rest of mentioned volatiles) comprised of automated headspace (HS) solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometric detection (GC-MS). Both methods were developed based on already published me- thod for determionation of volatiles in wine samples [2]. Among identified volatiles, 13 yeast-produced volatiles were selected and their antifungal activity was tested against B. cinerea in the fumigation bioassay. Terpenes citronellol, geraniol, nerol, α-terpineol and linalool were the most effective against B. cinerea mycelium growth with the EC50 beetwen 6,6 to 32,8 μL/L. 4-Vinyl phenol and isoamyl ace- tate also effectively inhibited mycelial growth of B. cinerea, EC50 being 48,6 and 63,3 μL/L, respectively, followed by eucalyptol (EC50 201,6 μL/L) and ethyl butyrate (EC50 238,4 μL/L). 4-Vinyl guaiacol did not show any inhibitory effect, while the remaining tested compounds showed inhibition against B. cinerea growth, however we were not able to determine EC50 with the selected concentration ranges. Additio- naly, exposure of B. cinerea-infected grape berries to the volatiles from P. guilliermondii cultures also lowered the number of infected grape berries, when applied to in vivo assay.

Herein presented novel research approach strongly suggests that yeast produced volatiles such as ter- penes, volatile phenols and esters are one of the possible mechanisms for controlling Botrytis rot of fruit and promising biofumigants.

1. Adesida R. 2022. Exploration of yeast biodiversity potential for development of alternative biofungicides in viticulture : dissertation. University of Nova Gorica.
2. Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; Revel,, G.; Schmidtke, L. M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. (2015), J Agric Food Chem 63(41): 9103-11

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mitja Martelanc1, Lenart Žežlina2, Tatjana Radovanović Vukajlović1, Melita Sternad Lemut1, Lorena Butinar1

1. University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2. University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia

Contact the author*

Keywords

volatile organic compounds, HS-SPME-GC-MS, biocontrol, Botrytis cinerea

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.