terclim by ICS banner
IVES 9 IVES Conference Series 9 CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Abstract

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel. Based on sensory assessment, selected wines were examined for their global aroma profile by sensory guided odorant screening techniques (preparative high pressure liquid chromatography; gas chromatography–mass spectrometry/olfactometry (GC–MS/O); sensory evaluation), and several odorous zones (OZs) of interest resembling the original olfactory notes (citrus, tropical fruits etc.) of the initial wines were noted. The aroma descriptors, linear retention index, and mass spectra of the suspected chromatography peaks and their accompanying OZs of interest revealed the presence and importance of volatile thiols in Riesling wines analysed. Hence, selective silver ion solid phase extraction and multidimensional GC–MS/O were applied for further characterization of targeted thiol-relevant OZs, allowing tentative identification of unknown thiols, with one new mercapto monoterpenoid confirmed by orthogonal approach. Following the sensory guided qualitative screening efforts, a new and highly sensitive quantitation method based on chemical derivatization and liquid chromatography quadrupole Orbitrap high-resolution MS was developed for the analysis of a substantial number of known and newly identified volatile thiols in the wine set. Quantitative results confirmed the relevance of 13 odorous thiols in Riesling, with several of them presented at concentrations well over their perception thresholds, as 3-sulfanylhexanol for instance. Thus, the combination of the chemical analysis of thiols and the sensory evaluation made it possible to draw up regional profiles according to the origin of the wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Emilio De Longhi1,2,3, Liang Chen1, 2, †, Pascaline Redon1, 2, Christoph Schüssler4, Rainer Jung4, Claus Patz5, Doris Rau-Hut3, Philippe Darriet1,2

1. Université de Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Hochschule Geisenheim University, Department of Microbiology and Biochemistry, Von-Lade-Str. 1, 65366 Geisenheim, Germany
4. Hochschule Geisenheim University, Department of Enology, Von-Lade-Str. 1, 65366 Geisenheim, Germany
5. Hochschule Geisenheim University, Department of Beverage Research, Von-Lade-Str. 1, 65366 Geisenheim, Germany †Current address: E. & J. Gallo Winery, 600 Yosemite Boulevard, Modesto, CA 95354, United States

Contact the author*

Keywords

Riesling wine aroma, Volatile thiols, Identification, Quantitation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.