terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

Abstract

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

The extractions rates showed huge differences between the non acylated and the para-coumaroylated anthocyanins. The former were much easier to extract than the latter. Particularily in model solutions, the extraction of p-coumaroylated anthocyanins was almost negligible. The extraction rate of tannins was between those of the two anthocyanin families. Moreover, in wines as in model solutions, the final concentrations in tannins, non acylated and p-coumaroylated anthocyanins showed correlations that did not exist in the berry compositions, suggesting a similar mechanism of extraction associating those three families of polyphenols. According to the CoMPPs, these mechanisms would mainly rely on polysaccharidic families, namely hemicelluloses, homogalacturonans, rhamnogalacturonans, and extensins.

The major role of the cell wall polysaccharides in the extraction of tannins and anthocyanins was confirmed. CoMPPs revealed a much more complex mechanism than expected, e.g. homogalacturonans in skins and pulps associated to an increase and a decrease of the polyphenols extractibilities, respectively. Moreover, our study changed the standpoint on cell wall polysaccharides. Up to now, they were considered as detrimental since they bind polyphenols, and were thus expected to increase losses. But they also release soluble polysaccharides (PRAGs) which contribute positively to the colloidal stability of wines.

1. Boulet, J.C., Abi-Habib, E., Carrillo, S., Roi, S., Veran, F., Verbaere, A., Meudec, E., Rattier, A., Ducasse, M.A., Jorgensen, B. Hansen, J., Le Gall, S., Poncet-Legrand, C., Cheynier, V., Doco, T., Vernhet, A. Focus on the relationships between the cell wall composition in the extraction of anthocyanins and tannins from grape berries. Food Chemistry, 406, 2023. https://doi.org/10.1016/j.foodchem.2022.135023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jean-Claude Boulet1,2, Elissa Abi-Habib¹, Stéphanie Carrillo¹, Stéphanie Roi¹, Frédéric Veran¹, Arnaud Verbaere1,2, Emmanuelle Meudec1,2, Anais Rattiera², Marie-Agnès Ducasse³, Bodil, Jorgensen⁴, Jeanett Hansen⁴, Sophie Le Gall⁵,⁶, Céline Poncet-Legrand¹, Véronique Cheynier1,2, Thierry Doco¹, Aude Vernhet¹

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. IFV, experimental unit of Pech Rouge, 11430 Gruissan, France
4. Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
5. INRAE, UR BIA, 44316 Nantes, France
6. INRAE, PROBE research infrastructure, BIBS biopolymers analysis facility, 44316 Nantes, France

Contact the author*

Keywords

Yeast, New Zealand Pinot noir, Polysaccharides, Chemical profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.