terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

Abstract

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

The extractions rates showed huge differences between the non acylated and the para-coumaroylated anthocyanins. The former were much easier to extract than the latter. Particularily in model solutions, the extraction of p-coumaroylated anthocyanins was almost negligible. The extraction rate of tannins was between those of the two anthocyanin families. Moreover, in wines as in model solutions, the final concentrations in tannins, non acylated and p-coumaroylated anthocyanins showed correlations that did not exist in the berry compositions, suggesting a similar mechanism of extraction associating those three families of polyphenols. According to the CoMPPs, these mechanisms would mainly rely on polysaccharidic families, namely hemicelluloses, homogalacturonans, rhamnogalacturonans, and extensins.

The major role of the cell wall polysaccharides in the extraction of tannins and anthocyanins was confirmed. CoMPPs revealed a much more complex mechanism than expected, e.g. homogalacturonans in skins and pulps associated to an increase and a decrease of the polyphenols extractibilities, respectively. Moreover, our study changed the standpoint on cell wall polysaccharides. Up to now, they were considered as detrimental since they bind polyphenols, and were thus expected to increase losses. But they also release soluble polysaccharides (PRAGs) which contribute positively to the colloidal stability of wines.

1. Boulet, J.C., Abi-Habib, E., Carrillo, S., Roi, S., Veran, F., Verbaere, A., Meudec, E., Rattier, A., Ducasse, M.A., Jorgensen, B. Hansen, J., Le Gall, S., Poncet-Legrand, C., Cheynier, V., Doco, T., Vernhet, A. Focus on the relationships between the cell wall composition in the extraction of anthocyanins and tannins from grape berries. Food Chemistry, 406, 2023. https://doi.org/10.1016/j.foodchem.2022.135023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jean-Claude Boulet1,2, Elissa Abi-Habib¹, Stéphanie Carrillo¹, Stéphanie Roi¹, Frédéric Veran¹, Arnaud Verbaere1,2, Emmanuelle Meudec1,2, Anais Rattiera², Marie-Agnès Ducasse³, Bodil, Jorgensen⁴, Jeanett Hansen⁴, Sophie Le Gall⁵,⁶, Céline Poncet-Legrand¹, Véronique Cheynier1,2, Thierry Doco¹, Aude Vernhet¹

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. IFV, experimental unit of Pech Rouge, 11430 Gruissan, France
4. Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
5. INRAE, UR BIA, 44316 Nantes, France
6. INRAE, PROBE research infrastructure, BIBS biopolymers analysis facility, 44316 Nantes, France

Contact the author*

Keywords

Yeast, New Zealand Pinot noir, Polysaccharides, Chemical profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.