terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

Abstract

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

The extractions rates showed huge differences between the non acylated and the para-coumaroylated anthocyanins. The former were much easier to extract than the latter. Particularily in model solutions, the extraction of p-coumaroylated anthocyanins was almost negligible. The extraction rate of tannins was between those of the two anthocyanin families. Moreover, in wines as in model solutions, the final concentrations in tannins, non acylated and p-coumaroylated anthocyanins showed correlations that did not exist in the berry compositions, suggesting a similar mechanism of extraction associating those three families of polyphenols. According to the CoMPPs, these mechanisms would mainly rely on polysaccharidic families, namely hemicelluloses, homogalacturonans, rhamnogalacturonans, and extensins.

The major role of the cell wall polysaccharides in the extraction of tannins and anthocyanins was confirmed. CoMPPs revealed a much more complex mechanism than expected, e.g. homogalacturonans in skins and pulps associated to an increase and a decrease of the polyphenols extractibilities, respectively. Moreover, our study changed the standpoint on cell wall polysaccharides. Up to now, they were considered as detrimental since they bind polyphenols, and were thus expected to increase losses. But they also release soluble polysaccharides (PRAGs) which contribute positively to the colloidal stability of wines.

1. Boulet, J.C., Abi-Habib, E., Carrillo, S., Roi, S., Veran, F., Verbaere, A., Meudec, E., Rattier, A., Ducasse, M.A., Jorgensen, B. Hansen, J., Le Gall, S., Poncet-Legrand, C., Cheynier, V., Doco, T., Vernhet, A. Focus on the relationships between the cell wall composition in the extraction of anthocyanins and tannins from grape berries. Food Chemistry, 406, 2023. https://doi.org/10.1016/j.foodchem.2022.135023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jean-Claude Boulet1,2, Elissa Abi-Habib¹, Stéphanie Carrillo¹, Stéphanie Roi¹, Frédéric Veran¹, Arnaud Verbaere1,2, Emmanuelle Meudec1,2, Anais Rattiera², Marie-Agnès Ducasse³, Bodil, Jorgensen⁴, Jeanett Hansen⁴, Sophie Le Gall⁵,⁶, Céline Poncet-Legrand¹, Véronique Cheynier1,2, Thierry Doco¹, Aude Vernhet¹

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. IFV, experimental unit of Pech Rouge, 11430 Gruissan, France
4. Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
5. INRAE, UR BIA, 44316 Nantes, France
6. INRAE, PROBE research infrastructure, BIBS biopolymers analysis facility, 44316 Nantes, France

Contact the author*

Keywords

Yeast, New Zealand Pinot noir, Polysaccharides, Chemical profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.