terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Abstract

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.

Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

The aim of this study was to evaluate the impact of high molecular weight mannoproteins on tannin-protein interactions. To this end, experiments were performed in a model wine using tannins purified from a red Syrah wine and BSA. Tannin-BSA aggregation kinetics were followed for 1 hour through Dynamic Light Scattering measurements in the absence and presence of mannoproteins. To progress in the identification of structure-function relationships and on the part played by the polysaccharide part, mannoproteins fractions from four yeast strains were extracted and purified. Yeast Strains were selected according to their origin and specific mannoprotein polysaccharide structure: a commercial enological strain (MP-LMD47), the wild-type BY4742 strain (MP-WT), and two of its mutants ΔMnn4 (MP-Mnn4, no mannosyl-phosphorylation) and ΔMnn2 (MP-Mnn2, linear N-glycosylation backbone). A thorough characterization of mannoprotein fractions confirmed the structural differences between mannoproteins from each yeast strain.

MPs were capable of delaying tannin-BSA aggregation kinetics by preventing the formation of micron-sized particles within the hour of measurement but did not avoid the long-term precipitation of tannin-BSA aggregates. Experiments indicated that mannoproteins interfere with tannin-BSA enlarged aggregation through the formation of a ternary MP-Tannin-BSA system. To be able to prevent tannin-BSA particle growth, the density/compactness of the polysaccharide moiety of MPs was a key factor.

 

1. Boulet, J.-C., Trarieux, C., Souquet, J.-M., Ducasse, M.-A., Caillé, S., Samson, A., … Cheynier, V. (2016). Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency. Food Chemistry, 190, 357–363. https://doi.org/10.1016/j.foodchem.2015.05.062
2. Cheynier, V. (2012). Phenolic compounds: from plants to foods. Phytochemistry Reviews, 11(2–3), 153–177. https://doi. org/10.1007/s11101-012-9242-8
3. Soares, S., Mateus, N., & de Freitas, V. (2012). Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. Journal of Agricultural and Food Chemistry, 60(15), 3966–3972. https://doi.org/10.1021/jf3002747
4. Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., … Waters, E. J. (2003). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. Journal of the Science of Food and Agriculture, 83(6), 564–573. https://doi.org/10.1002/jsfa.1394

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Saul Assunção Bicca1,2, Céline Poncet-Legrand¹, Stéphanie Roi¹, Julie Mekoue², Thierry Doco¹ And Aude Vernhet¹

1. SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand, SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac, France

Contact the author*

Keywords

Mannoproteins, Physico-chemical Interactions, Astringency, Condensed Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.