terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Abstract

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.

Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

The aim of this study was to evaluate the impact of high molecular weight mannoproteins on tannin-protein interactions. To this end, experiments were performed in a model wine using tannins purified from a red Syrah wine and BSA. Tannin-BSA aggregation kinetics were followed for 1 hour through Dynamic Light Scattering measurements in the absence and presence of mannoproteins. To progress in the identification of structure-function relationships and on the part played by the polysaccharide part, mannoproteins fractions from four yeast strains were extracted and purified. Yeast Strains were selected according to their origin and specific mannoprotein polysaccharide structure: a commercial enological strain (MP-LMD47), the wild-type BY4742 strain (MP-WT), and two of its mutants ΔMnn4 (MP-Mnn4, no mannosyl-phosphorylation) and ΔMnn2 (MP-Mnn2, linear N-glycosylation backbone). A thorough characterization of mannoprotein fractions confirmed the structural differences between mannoproteins from each yeast strain.

MPs were capable of delaying tannin-BSA aggregation kinetics by preventing the formation of micron-sized particles within the hour of measurement but did not avoid the long-term precipitation of tannin-BSA aggregates. Experiments indicated that mannoproteins interfere with tannin-BSA enlarged aggregation through the formation of a ternary MP-Tannin-BSA system. To be able to prevent tannin-BSA particle growth, the density/compactness of the polysaccharide moiety of MPs was a key factor.

 

1. Boulet, J.-C., Trarieux, C., Souquet, J.-M., Ducasse, M.-A., Caillé, S., Samson, A., … Cheynier, V. (2016). Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency. Food Chemistry, 190, 357–363. https://doi.org/10.1016/j.foodchem.2015.05.062
2. Cheynier, V. (2012). Phenolic compounds: from plants to foods. Phytochemistry Reviews, 11(2–3), 153–177. https://doi. org/10.1007/s11101-012-9242-8
3. Soares, S., Mateus, N., & de Freitas, V. (2012). Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. Journal of Agricultural and Food Chemistry, 60(15), 3966–3972. https://doi.org/10.1021/jf3002747
4. Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., … Waters, E. J. (2003). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. Journal of the Science of Food and Agriculture, 83(6), 564–573. https://doi.org/10.1002/jsfa.1394

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Saul Assunção Bicca1,2, Céline Poncet-Legrand¹, Stéphanie Roi¹, Julie Mekoue², Thierry Doco¹ And Aude Vernhet¹

1. SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand, SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac, France

Contact the author*

Keywords

Mannoproteins, Physico-chemical Interactions, Astringency, Condensed Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.