terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Abstract

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.

Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

The aim of this study was to evaluate the impact of high molecular weight mannoproteins on tannin-protein interactions. To this end, experiments were performed in a model wine using tannins purified from a red Syrah wine and BSA. Tannin-BSA aggregation kinetics were followed for 1 hour through Dynamic Light Scattering measurements in the absence and presence of mannoproteins. To progress in the identification of structure-function relationships and on the part played by the polysaccharide part, mannoproteins fractions from four yeast strains were extracted and purified. Yeast Strains were selected according to their origin and specific mannoprotein polysaccharide structure: a commercial enological strain (MP-LMD47), the wild-type BY4742 strain (MP-WT), and two of its mutants ΔMnn4 (MP-Mnn4, no mannosyl-phosphorylation) and ΔMnn2 (MP-Mnn2, linear N-glycosylation backbone). A thorough characterization of mannoprotein fractions confirmed the structural differences between mannoproteins from each yeast strain.

MPs were capable of delaying tannin-BSA aggregation kinetics by preventing the formation of micron-sized particles within the hour of measurement but did not avoid the long-term precipitation of tannin-BSA aggregates. Experiments indicated that mannoproteins interfere with tannin-BSA enlarged aggregation through the formation of a ternary MP-Tannin-BSA system. To be able to prevent tannin-BSA particle growth, the density/compactness of the polysaccharide moiety of MPs was a key factor.

 

1. Boulet, J.-C., Trarieux, C., Souquet, J.-M., Ducasse, M.-A., Caillé, S., Samson, A., … Cheynier, V. (2016). Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency. Food Chemistry, 190, 357–363. https://doi.org/10.1016/j.foodchem.2015.05.062
2. Cheynier, V. (2012). Phenolic compounds: from plants to foods. Phytochemistry Reviews, 11(2–3), 153–177. https://doi. org/10.1007/s11101-012-9242-8
3. Soares, S., Mateus, N., & de Freitas, V. (2012). Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. Journal of Agricultural and Food Chemistry, 60(15), 3966–3972. https://doi.org/10.1021/jf3002747
4. Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., … Waters, E. J. (2003). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. Journal of the Science of Food and Agriculture, 83(6), 564–573. https://doi.org/10.1002/jsfa.1394

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Saul Assunção Bicca1,2, Céline Poncet-Legrand¹, Stéphanie Roi¹, Julie Mekoue², Thierry Doco¹ And Aude Vernhet¹

1. SPO Institut Agro, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand, SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac, France

Contact the author*

Keywords

Mannoproteins, Physico-chemical Interactions, Astringency, Condensed Tannins

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.