GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Abstract

Context and purpose of the study: Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures, with a more pronounced effect on night temperatures. In Australia, very warm monthly minimum temperatures (two standard deviations higher than the historical average) increased from a 2% to 11 % frequency of occurrence, and very cool monthly night temperatures have declined by about a third (Barlow and Daly, 2017). Night time temperatures are known to influence transcriptomic responses in ripening grapes (Rienth et al., 2014), however, the effect on grape chemical composition, in particular on the aroma compounds, remains to be elucidated. Aroma compounds such as the terpenes and norisoprenoids are key to the quality of white wine varieties such as Riesling. Understanding both the synthesis and loss of these desirable compounds due to the effects of warmer night temperatures, is critical to understanding the need for implementation of suitable mitigation strategies to help cope with the effects of warming projected in the future.

Materials and Methods: Four sites in the Canberra wine region (Australian Capital Territory and New South Wales, Australia) were chosen based on climatic data and, historic cool night index. As such, sites were catalogued as having either warmer, cooler or intermediate temperature nights. Temperature, humidity and light sensors were installed from the véraison stage to monitor meso‐ and microclimatic parameters throughout the ripening period. Berries were collected every two weeks from véraison until commercial harvest for chemical analysis. Midday stem water potential was also measured at sampling to assess water stress levels. Chemical analyses included total soluble sugars, titratable acidity, pH, yeast assimilable nitrogen, carotenoids, and free and bound volatile compounds.

Results: Higher temperature summations significantly depressed the synthesis of important aroma compounds such as norisoprenoids and terpenes, with carotenoid concentrations also being significantly decreased. Conversely, the concentration of aldehydes such as E-2‐octenal and E-2‐nonanal were positively correlated with higher temperature summation throughout the overall ripening season. Night temperature appeared to have a more pronounced effect, particularly on the synthesis of terpenes, during the later stages of berry development, as previously observed by Rienth et al. (2014). At harvest, warmer night temperatures resulted in lower concentrations of terpenes (e.g. linalool and α‐ terpineol) and the C6 alcohols (e.g. 1‐hexanol) whilst a direct correlation to heat summation was less significant. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Joanna M. GAMBETTA1, John BLACKMAN1, Andrew HALL2, Leigh M. SCHMIDTKE1, Bruno HOLZAPFEL1,3

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2560, Australia
(2) Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia
(3) New South Wales Department of Primary Industries, Wagga Wagga, Australia

Contact the author

Keywords

 Riesling, climate, night temperature, chemical composition, volatiles, carotenoids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Under-vine cover crops as a management tool for irrigated Mediterranean vineyards: agronomic implications and changes in soil physical and biological properties 

Cover crops are increasingly considered in Mediterranean climate vineyards due to a combination of agronomic and regulatory considerations. However, the soil under the vines themselves is typically kept free of vegetation by mechanical plowing or herbicide spraying. Taking into account that these practices may convey a number of non-favourable economic and environmental implications, and the fact that drip irrigation can ease the use of cover crops under the vines, the aim of this work was to evaluate the agronomic implications and the changes in soil physical and biological properties caused by an under-vine cover crop in a Mediterranean area.

Landscape marketing and landscape reality: what is the relationship? The case of the Loire Valley vineyards

This issue poses two questions: the relationship between beauty and taste (is landscape quality an index of wine quality ?), and the gap or the conformity between our image of the “terroir” and the visible reality. The landscape is both an object and a representation.

Physicochemical parameters of juices made from different grape varieties in the 2019 and 2020 Harvests of Rio Grande do Sul

This study evaluated the physicochemical parameters of grape juices produced in the serra gaúcha from the 2019 and 2020 harvests. To do this, 43 juice samples were analyzed, and divided into four distinct categories: juices made exclusively from bordô grapes (sb), juices made from bordô and niágara grapes (sbn), juices combining bordô and isabel grapes, and juices made from cuts of several grape varieties.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.