GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Abstract

Context and purpose of the study: Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures, with a more pronounced effect on night temperatures. In Australia, very warm monthly minimum temperatures (two standard deviations higher than the historical average) increased from a 2% to 11 % frequency of occurrence, and very cool monthly night temperatures have declined by about a third (Barlow and Daly, 2017). Night time temperatures are known to influence transcriptomic responses in ripening grapes (Rienth et al., 2014), however, the effect on grape chemical composition, in particular on the aroma compounds, remains to be elucidated. Aroma compounds such as the terpenes and norisoprenoids are key to the quality of white wine varieties such as Riesling. Understanding both the synthesis and loss of these desirable compounds due to the effects of warmer night temperatures, is critical to understanding the need for implementation of suitable mitigation strategies to help cope with the effects of warming projected in the future.

Materials and Methods: Four sites in the Canberra wine region (Australian Capital Territory and New South Wales, Australia) were chosen based on climatic data and, historic cool night index. As such, sites were catalogued as having either warmer, cooler or intermediate temperature nights. Temperature, humidity and light sensors were installed from the véraison stage to monitor meso‐ and microclimatic parameters throughout the ripening period. Berries were collected every two weeks from véraison until commercial harvest for chemical analysis. Midday stem water potential was also measured at sampling to assess water stress levels. Chemical analyses included total soluble sugars, titratable acidity, pH, yeast assimilable nitrogen, carotenoids, and free and bound volatile compounds.

Results: Higher temperature summations significantly depressed the synthesis of important aroma compounds such as norisoprenoids and terpenes, with carotenoid concentrations also being significantly decreased. Conversely, the concentration of aldehydes such as E-2‐octenal and E-2‐nonanal were positively correlated with higher temperature summation throughout the overall ripening season. Night temperature appeared to have a more pronounced effect, particularly on the synthesis of terpenes, during the later stages of berry development, as previously observed by Rienth et al. (2014). At harvest, warmer night temperatures resulted in lower concentrations of terpenes (e.g. linalool and α‐ terpineol) and the C6 alcohols (e.g. 1‐hexanol) whilst a direct correlation to heat summation was less significant. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Joanna M. GAMBETTA1, John BLACKMAN1, Andrew HALL2, Leigh M. SCHMIDTKE1, Bruno HOLZAPFEL1,3

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2560, Australia
(2) Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia
(3) New South Wales Department of Primary Industries, Wagga Wagga, Australia

Contact the author

Keywords

 Riesling, climate, night temperature, chemical composition, volatiles, carotenoids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Techniques to study graft union formation in grapevine 

Grapevines are grown grafting in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which are primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, ideally grapevine rootstocks should be resistant to other soil borne pathogens and adapted to abiotic stress conditions. New rootstocks have the potential to adapt agriculture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.