terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

Abstract

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied. The applications were performed at veraison stage, in a rando- mized complete block and grapes were harvested at their optimum technological maturity level. White wines vinification procedures were carried out (Miliordos et al., 2022) physiochemical parameters of must and wine, and wine aroma compounds were examined. Volatile compounds were analyzed using a gas chromatography coupled to a mass spectrophotometric detector (Miliordos et al. 2022). Results were statistically evaluated by analysis of variance (ANOVA at the p ≤ 0.05 level) and principal component analysis (PCA). CHT treatment increased total terpenes, esters and monoterpenes concentration which may enhance the desirable aromas for Savvatiano wines. Moreover, ABA enhanced the concentration of total esters, while kept in lower levels higher alcohols than control wines related to unpleasant aromas. On the other hand, BTH kept in low levels monoterpenes and acetates, as well as concentration of acids (hexanoic acid, isobutyric, butyric, isovaleric) and alcohols were still in low levels compared to control wines and the CHT and ABA treated. Furthermore, these differences in the volatile compound levels could sensorially detected, by the sensory panel.
The application of biostimulants recorded promising results to enhance aroma profile of the produced white wines. More research on different Greek cultivars in different terroirs is needed in order to en- hance our knowledge regarding the effect of biostimulants on grape and wine quality. Funding : This research was co-funded by the European Regional Development Fund of theEuropean Union and Greek national funds through the Operational Program ompetitiveness,Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK- 04200 (MU-SA).

 

1. Giménez-Bañón, María José, Juan Daniel Moreno-Olivares, Diego Fernando Paladines-Quezada, Juan Antonio Bleda-Sán-chez, José Ignacio Fernández-Fernández, Belén Parra-Torrejón, José Manuel Delgado-López, and Rocío Gil-Muñoz. 2022. “Effects of Methyl Jasmonate and Nano-Methyl Jasmonate Treatments on Monastrell Wine Volatile Composition.” Molecules 27 (9): 2878. https://doi.org/10.3390/molecules27092878
2. Gómez-Plaza, Encarna, Laura Mestre-Ortuño, Yolanda Ruiz-García, Jose Ignacio Fernández-Fernández, and Jose María Ló-pez-Roca. 2012. “Effect of Benzothiadiazole and Methyl Jasmonate on the Volatile Compound Composition of Vitis Vinife-ra L. Monastrell Grapes and Wines.” American Journal of Enology and Viticulture 63 (3): 394–401. https://doi.org/10.5344/ajev.2012.12011
3. Miliordos, Dimitrios Evangelos, Alexandros Kanapitsas, Despina Lola, Elli Goulioti, Nikolaos Kontoudakis, Georgios Leventis, Myrto Tsiknia, and Yorgos Kotseridis. 2022. “Effect of Nitrogen Fertilization on Savvatiano (Vitis Vinifera L.) Grape and Wine Composition.” Beverages 8 (2): 29. https://doi.org/10.3390/beverages8020029.
4. Monteiro, Eliana, Berta Gonçalves, Isabel Cortez, and Isaura Castro. 2022. “The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review.” Plants 11 (3): 396. https://doi.org/10.3390/plants11030396.
5. Ruiz-Garcia, Y., J. M. Lopez-Roca, A. B. Bautista-Ortin, R. Gil-Munoz, and E. Gomez-Plaza. 2014. “Effect of Combined Use of Benzothiadiazole and Methyl Jasmonate on Volatile Compounds of Monastrell Wine.” American Journal of Enology and Viticulture 65 (2): 238–43. https://doi.org/10.5344/ajev.2014.13119 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Miliordos Dimitrios Evangelos¹, Elli Gouliti¹, Kontoudakis Nikolaos1,2, Kotseridis Yorgos¹

1. Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Oenology and Alcoholic Beverage Drinks, 75 Iera Odos, 11855 Athens, Greece
2. Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st km Drama-Mikrochori, 66100 Drama, Greece

Contact the author*

Keywords

Savvatiano, Biostimulants, Volatile compounds, Aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.