terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

Abstract

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied. The applications were performed at veraison stage, in a rando- mized complete block and grapes were harvested at their optimum technological maturity level. White wines vinification procedures were carried out (Miliordos et al., 2022) physiochemical parameters of must and wine, and wine aroma compounds were examined. Volatile compounds were analyzed using a gas chromatography coupled to a mass spectrophotometric detector (Miliordos et al. 2022). Results were statistically evaluated by analysis of variance (ANOVA at the p ≤ 0.05 level) and principal component analysis (PCA). CHT treatment increased total terpenes, esters and monoterpenes concentration which may enhance the desirable aromas for Savvatiano wines. Moreover, ABA enhanced the concentration of total esters, while kept in lower levels higher alcohols than control wines related to unpleasant aromas. On the other hand, BTH kept in low levels monoterpenes and acetates, as well as concentration of acids (hexanoic acid, isobutyric, butyric, isovaleric) and alcohols were still in low levels compared to control wines and the CHT and ABA treated. Furthermore, these differences in the volatile compound levels could sensorially detected, by the sensory panel.
The application of biostimulants recorded promising results to enhance aroma profile of the produced white wines. More research on different Greek cultivars in different terroirs is needed in order to en- hance our knowledge regarding the effect of biostimulants on grape and wine quality. Funding : This research was co-funded by the European Regional Development Fund of theEuropean Union and Greek national funds through the Operational Program ompetitiveness,Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK- 04200 (MU-SA).

 

1. Giménez-Bañón, María José, Juan Daniel Moreno-Olivares, Diego Fernando Paladines-Quezada, Juan Antonio Bleda-Sán-chez, José Ignacio Fernández-Fernández, Belén Parra-Torrejón, José Manuel Delgado-López, and Rocío Gil-Muñoz. 2022. “Effects of Methyl Jasmonate and Nano-Methyl Jasmonate Treatments on Monastrell Wine Volatile Composition.” Molecules 27 (9): 2878. https://doi.org/10.3390/molecules27092878
2. Gómez-Plaza, Encarna, Laura Mestre-Ortuño, Yolanda Ruiz-García, Jose Ignacio Fernández-Fernández, and Jose María Ló-pez-Roca. 2012. “Effect of Benzothiadiazole and Methyl Jasmonate on the Volatile Compound Composition of Vitis Vinife-ra L. Monastrell Grapes and Wines.” American Journal of Enology and Viticulture 63 (3): 394–401. https://doi.org/10.5344/ajev.2012.12011
3. Miliordos, Dimitrios Evangelos, Alexandros Kanapitsas, Despina Lola, Elli Goulioti, Nikolaos Kontoudakis, Georgios Leventis, Myrto Tsiknia, and Yorgos Kotseridis. 2022. “Effect of Nitrogen Fertilization on Savvatiano (Vitis Vinifera L.) Grape and Wine Composition.” Beverages 8 (2): 29. https://doi.org/10.3390/beverages8020029.
4. Monteiro, Eliana, Berta Gonçalves, Isabel Cortez, and Isaura Castro. 2022. “The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review.” Plants 11 (3): 396. https://doi.org/10.3390/plants11030396.
5. Ruiz-Garcia, Y., J. M. Lopez-Roca, A. B. Bautista-Ortin, R. Gil-Munoz, and E. Gomez-Plaza. 2014. “Effect of Combined Use of Benzothiadiazole and Methyl Jasmonate on Volatile Compounds of Monastrell Wine.” American Journal of Enology and Viticulture 65 (2): 238–43. https://doi.org/10.5344/ajev.2014.13119 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Miliordos Dimitrios Evangelos¹, Elli Gouliti¹, Kontoudakis Nikolaos1,2, Kotseridis Yorgos¹

1. Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Oenology and Alcoholic Beverage Drinks, 75 Iera Odos, 11855 Athens, Greece
2. Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st km Drama-Mikrochori, 66100 Drama, Greece

Contact the author*

Keywords

Savvatiano, Biostimulants, Volatile compounds, Aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.