terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Abstract

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

Our trial concerned two Ugni blanc parcels planted in 2006 and 2015, in vineyards managed by JAS HENNESSY & CO, at Juillac-le-Coq and Saint-Preuil in Charente. The parcels were set out in double Guyot-Poussard. Starting in 2018, two different types of pruning quality were used in both parcels. Short pruning damaged the diaphragm, whereas high pruning ensured a desiccation cone to keep the diaphragm safe. The aim of our work was to measure over three years the different impacts of these two types of pruning on grape and wine quality.

From 2020 to 2022, weight and quality of grapes were analysed at harvest. Microvinification was then carried out. On both musts and wines, several chemical analyses were performed: (i) amino acids, to de- termine the nitrogen status of future wine quality; (ii) ester and higher alcohol aroma wine markers; (iii) methyl salicylate, a specific GTDs plant marker. Triangular wine tasting was carried out on six-month- old wines.

Amino acid results tended to differ with pruning quality. This was not the case for the ester and higher alcohol results, which only showed differences between the vintages. The methyl salicylate level was low in wines, thereby confirming the findings of Xavier Poitou (3) for the Ugni blanc cultivar. Although the wine tasting analyses did detect differences between short and high pruning for the young parcel, it was more difficult to do so for the older one.

The present study confirms the interest of applying high pruning on a long-term basis. It can have an indirect effect on the plant’s physiological functioning, keeping the vines safer and preserving the grape quality.

 

1. Bruez, E., Lecomte, P., Grosman, J., Doublet, B., Bertsch, C., Fontaine, F., Da Costa, J., Ugaglia, A., Teissedre, P., Guerin-Dubrana, L., Rey P. Overview of grapevine trunk diseases in France in the 2000s. Phytopathologia Mediterranea 2003, 52, 262−275.
2. Viala P., Vermorel V., 1910. Ampelographie. Traité général de viticulture. Ed. Masson et Cie.
3. Poitou X., 2016. Thesis. Contribution à la connaissance aromatique des vins rouges : Approche sensorielle et moléculaire des nuances « végétales, vertes » en lien avec leur origine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Emilie BRUEZ 1, Céline CHOLET 1, Patrice COLL 2, Mathilde BOISSEAU 2, Xavier POITOU 2, Pascaline REDON 1 , Laurent RIQUIER 1, Ghislaine HILBERT-MASSON 3, Sandra VANBRABANT 1, Soizic LACAMPAGNE 1 and Laurence GENY-DENIS 1

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. HENNESSY, rue de la Richonne, 16101 Cognac, France
3. EGFV, Université Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Short and High pruning, Chemical analyses, Methyl salicylate, Wine tasting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.