terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Abstract

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccha-rides, proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality. Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxi-dant, and antihypertensive potentials. However, the peptides detected in wine can be influenced by the interaction between yeasts and grape components. Therefore, to study the actual contribution of yeasts to the presence of wine peptides, the concentration and profile of peptides released by yeasts during and after fermentation was studied in model conditions.

A synthetic must, prepared replacing amino acids with NH4Cl as the sole nitrogen source, was inoculated with an oenological Saccharomyces cerevisiae strain. The resulting synthetic wine was sampled weekly over the first month, and monthly in the following five months. After centrifugation, each sample was ultrafiltered (3 kDa MWCO), and the peptides on the filtrate were quantified and separated by RP-HPLC. The peptides present in the 7 (end of fermentation) – and 120-day samples, were characterized by LC-MS/MS, thus determining their sequence and the putative origin. Moreover, their potential bioactivity was studied in silico using the BIOPEP Database.

Results showed that the total concentration of peptides increased during the first two weeks before pla-teauing to ≃ 0.91 g/L. Nevertheless, the number of peptides (2263 at day 7; 1978 at day 120) and the amino acid sequence differed over time. Within the released peptides, in silico analysis revealed the presence of potential bioactive sequences in the samples taken at the end of fermentation and collected after 120 days of lees aging. The vast majority (≃ 95%) of the peptides showed a potential antihyperten-sive activity.

Results indicate that yeasts abundantly release different peptides during and after the alcoholic fermen-tation due to the presence of yeast cells. The high peptide concentration, variety, and bioactive potential reported here deserve further investigation to assess the role of this fraction on wine quality and, pos-sibly, health effects.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alberto, DE ISEPPI1,2, Matteo, MARANGON1,2, Viviana, CORICH1,2, Giorgio, ARRIGONI3,4, Davide, PORCELLATO5, Andrea, CURIO-NI1,2

1. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Italy
3. Department of Biomedical Sciences, University of Padova, Italy
4. Proteomic Center of Padova University, University of Padova, Italy
5. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway

Contact the author*

Keywords

Wine, Peptides, Yeast, Autolysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.