terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Abstract

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccha-rides, proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality. Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxi-dant, and antihypertensive potentials. However, the peptides detected in wine can be influenced by the interaction between yeasts and grape components. Therefore, to study the actual contribution of yeasts to the presence of wine peptides, the concentration and profile of peptides released by yeasts during and after fermentation was studied in model conditions.

A synthetic must, prepared replacing amino acids with NH4Cl as the sole nitrogen source, was inoculated with an oenological Saccharomyces cerevisiae strain. The resulting synthetic wine was sampled weekly over the first month, and monthly in the following five months. After centrifugation, each sample was ultrafiltered (3 kDa MWCO), and the peptides on the filtrate were quantified and separated by RP-HPLC. The peptides present in the 7 (end of fermentation) – and 120-day samples, were characterized by LC-MS/MS, thus determining their sequence and the putative origin. Moreover, their potential bioactivity was studied in silico using the BIOPEP Database.

Results showed that the total concentration of peptides increased during the first two weeks before pla-teauing to ≃ 0.91 g/L. Nevertheless, the number of peptides (2263 at day 7; 1978 at day 120) and the amino acid sequence differed over time. Within the released peptides, in silico analysis revealed the presence of potential bioactive sequences in the samples taken at the end of fermentation and collected after 120 days of lees aging. The vast majority (≃ 95%) of the peptides showed a potential antihyperten-sive activity.

Results indicate that yeasts abundantly release different peptides during and after the alcoholic fermen-tation due to the presence of yeast cells. The high peptide concentration, variety, and bioactive potential reported here deserve further investigation to assess the role of this fraction on wine quality and, pos-sibly, health effects.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alberto, DE ISEPPI1,2, Matteo, MARANGON1,2, Viviana, CORICH1,2, Giorgio, ARRIGONI3,4, Davide, PORCELLATO5, Andrea, CURIO-NI1,2

1. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Italy
3. Department of Biomedical Sciences, University of Padova, Italy
4. Proteomic Center of Padova University, University of Padova, Italy
5. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway

Contact the author*

Keywords

Wine, Peptides, Yeast, Autolysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.