terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Abstract

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccha-rides, proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality. Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxi-dant, and antihypertensive potentials. However, the peptides detected in wine can be influenced by the interaction between yeasts and grape components. Therefore, to study the actual contribution of yeasts to the presence of wine peptides, the concentration and profile of peptides released by yeasts during and after fermentation was studied in model conditions.

A synthetic must, prepared replacing amino acids with NH4Cl as the sole nitrogen source, was inoculated with an oenological Saccharomyces cerevisiae strain. The resulting synthetic wine was sampled weekly over the first month, and monthly in the following five months. After centrifugation, each sample was ultrafiltered (3 kDa MWCO), and the peptides on the filtrate were quantified and separated by RP-HPLC. The peptides present in the 7 (end of fermentation) – and 120-day samples, were characterized by LC-MS/MS, thus determining their sequence and the putative origin. Moreover, their potential bioactivity was studied in silico using the BIOPEP Database.

Results showed that the total concentration of peptides increased during the first two weeks before pla-teauing to ≃ 0.91 g/L. Nevertheless, the number of peptides (2263 at day 7; 1978 at day 120) and the amino acid sequence differed over time. Within the released peptides, in silico analysis revealed the presence of potential bioactive sequences in the samples taken at the end of fermentation and collected after 120 days of lees aging. The vast majority (≃ 95%) of the peptides showed a potential antihyperten-sive activity.

Results indicate that yeasts abundantly release different peptides during and after the alcoholic fermen-tation due to the presence of yeast cells. The high peptide concentration, variety, and bioactive potential reported here deserve further investigation to assess the role of this fraction on wine quality and, pos-sibly, health effects.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alberto, DE ISEPPI1,2, Matteo, MARANGON1,2, Viviana, CORICH1,2, Giorgio, ARRIGONI3,4, Davide, PORCELLATO5, Andrea, CURIO-NI1,2

1. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Italy
3. Department of Biomedical Sciences, University of Padova, Italy
4. Proteomic Center of Padova University, University of Padova, Italy
5. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway

Contact the author*

Keywords

Wine, Peptides, Yeast, Autolysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.