terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Abstract

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccha-rides, proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality. Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxi-dant, and antihypertensive potentials. However, the peptides detected in wine can be influenced by the interaction between yeasts and grape components. Therefore, to study the actual contribution of yeasts to the presence of wine peptides, the concentration and profile of peptides released by yeasts during and after fermentation was studied in model conditions.

A synthetic must, prepared replacing amino acids with NH4Cl as the sole nitrogen source, was inoculated with an oenological Saccharomyces cerevisiae strain. The resulting synthetic wine was sampled weekly over the first month, and monthly in the following five months. After centrifugation, each sample was ultrafiltered (3 kDa MWCO), and the peptides on the filtrate were quantified and separated by RP-HPLC. The peptides present in the 7 (end of fermentation) – and 120-day samples, were characterized by LC-MS/MS, thus determining their sequence and the putative origin. Moreover, their potential bioactivity was studied in silico using the BIOPEP Database.

Results showed that the total concentration of peptides increased during the first two weeks before pla-teauing to ≃ 0.91 g/L. Nevertheless, the number of peptides (2263 at day 7; 1978 at day 120) and the amino acid sequence differed over time. Within the released peptides, in silico analysis revealed the presence of potential bioactive sequences in the samples taken at the end of fermentation and collected after 120 days of lees aging. The vast majority (≃ 95%) of the peptides showed a potential antihyperten-sive activity.

Results indicate that yeasts abundantly release different peptides during and after the alcoholic fermen-tation due to the presence of yeast cells. The high peptide concentration, variety, and bioactive potential reported here deserve further investigation to assess the role of this fraction on wine quality and, pos-sibly, health effects.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alberto, DE ISEPPI1,2, Matteo, MARANGON1,2, Viviana, CORICH1,2, Giorgio, ARRIGONI3,4, Davide, PORCELLATO5, Andrea, CURIO-NI1,2

1. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Italy
3. Department of Biomedical Sciences, University of Padova, Italy
4. Proteomic Center of Padova University, University of Padova, Italy
5. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway

Contact the author*

Keywords

Wine, Peptides, Yeast, Autolysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.