terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Abstract

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccha-rides, proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality. Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxi-dant, and antihypertensive potentials. However, the peptides detected in wine can be influenced by the interaction between yeasts and grape components. Therefore, to study the actual contribution of yeasts to the presence of wine peptides, the concentration and profile of peptides released by yeasts during and after fermentation was studied in model conditions.

A synthetic must, prepared replacing amino acids with NH4Cl as the sole nitrogen source, was inoculated with an oenological Saccharomyces cerevisiae strain. The resulting synthetic wine was sampled weekly over the first month, and monthly in the following five months. After centrifugation, each sample was ultrafiltered (3 kDa MWCO), and the peptides on the filtrate were quantified and separated by RP-HPLC. The peptides present in the 7 (end of fermentation) – and 120-day samples, were characterized by LC-MS/MS, thus determining their sequence and the putative origin. Moreover, their potential bioactivity was studied in silico using the BIOPEP Database.

Results showed that the total concentration of peptides increased during the first two weeks before pla-teauing to ≃ 0.91 g/L. Nevertheless, the number of peptides (2263 at day 7; 1978 at day 120) and the amino acid sequence differed over time. Within the released peptides, in silico analysis revealed the presence of potential bioactive sequences in the samples taken at the end of fermentation and collected after 120 days of lees aging. The vast majority (≃ 95%) of the peptides showed a potential antihyperten-sive activity.

Results indicate that yeasts abundantly release different peptides during and after the alcoholic fermen-tation due to the presence of yeast cells. The high peptide concentration, variety, and bioactive potential reported here deserve further investigation to assess the role of this fraction on wine quality and, pos-sibly, health effects.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Alberto, DE ISEPPI1,2, Matteo, MARANGON1,2, Viviana, CORICH1,2, Giorgio, ARRIGONI3,4, Davide, PORCELLATO5, Andrea, CURIO-NI1,2

1. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Italy
3. Department of Biomedical Sciences, University of Padova, Italy
4. Proteomic Center of Padova University, University of Padova, Italy
5. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway

Contact the author*

Keywords

Wine, Peptides, Yeast, Autolysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.