terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

Abstract

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition. Many studies have been conducted to identify the key aroma compounds in oak wood, and in a recent work we re-ported the identification of two new unsaturated aldehydes responsible for the “puff pastry” and “me-tallic” nuances present in toasted oak wood aroma: (2E,4E,6Z)-nonatrienal (I) and trans-4,5-epoxy-(E)-2- decenal (II).1 In foods, these aldehydes are derived from the oxidative degradation of linolenic and linoleic acids, respectively. This degradation is promoted by heat, light and metal ions. However, no data are available on the presence of fatty acids in oak wood for oenological use (Quercus petraea). In this context, this work aimed to study the distribution of fatty acids in oak wood by focusing on the seaso-ning process taking into account the impact of climatic conditions. To do so, we studied in parallel the evolution and distribution of unsaturated aldehydes and fatty acids in seven oak wood staves during the seasoning process (0, 12, 18 and 36 months) depending on the location (Merpins, Châlon-en-Cham-pagne and Beaumes-de-Venise). They were selected for their climatic diversity (average temperature and rainfall). Based on this experimental protocol, 84 samples were analyzed. The study of unsaturated aldehydes was carried out by GC-NCI-MS (NH₃) analysis, while the study of fatty acids required the de-velopment of a quantification method by GC-TOF MS analysis after liquid-liquid extraction and deriva-tisation. The results show a significant impact of climatic conditions on the distribution of unsaturated aldehydes and fatty acids. For example, the highest levels of unsaturated aldehydes (1.5 ng/g wood (I) and 13.2 ng/g wood (II)) were detected in oak wood seasoned in Merpins and Beaumes-de-Venise (southern France) compared to that seasoned in Châlon-en-Champagne (northern France). Conversely, linolenic acid was detected at a higher level in seasoned oak wood in Châlon-en-Champagne (9.5 µg/g wood). It is likely that “warm” climates lead to a degradation of fatty acids in favor of the formation of unsaturated aldehydes. These new results underline the potential effect of global warming on the quality and sensory identity of oak wood and barrels. To go further, these samples were also toasted. The impact on the aroma of red wine will be discussed.

 

1. Courregelongue, M., Shinkaruk, S., Prida, A., Darriet, P., & Pons, A. (2022). Identification and Distribution of New Impact Aldehydes in Toasted Oak Wood ( Quercus petraea ). Journal of Agricultural and Food Chemistry, acs.jafc.2c01828. https://doi.org/10.1021/acs.jafc.2c01828

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Courregelongue 1,2,3, Andrei Prida 3, Alexandre Pons 1,2,3

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Seguin Moreau Cooperage, ZI Merpins, F-16103 Cognac, France

Contact the author*

Keywords

oak wood, fatty acids, unsaturated aldehydes, climate change

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.