terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

Abstract

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition. Many studies have been conducted to identify the key aroma compounds in oak wood, and in a recent work we re-ported the identification of two new unsaturated aldehydes responsible for the “puff pastry” and “me-tallic” nuances present in toasted oak wood aroma: (2E,4E,6Z)-nonatrienal (I) and trans-4,5-epoxy-(E)-2- decenal (II).1 In foods, these aldehydes are derived from the oxidative degradation of linolenic and linoleic acids, respectively. This degradation is promoted by heat, light and metal ions. However, no data are available on the presence of fatty acids in oak wood for oenological use (Quercus petraea). In this context, this work aimed to study the distribution of fatty acids in oak wood by focusing on the seaso-ning process taking into account the impact of climatic conditions. To do so, we studied in parallel the evolution and distribution of unsaturated aldehydes and fatty acids in seven oak wood staves during the seasoning process (0, 12, 18 and 36 months) depending on the location (Merpins, Châlon-en-Cham-pagne and Beaumes-de-Venise). They were selected for their climatic diversity (average temperature and rainfall). Based on this experimental protocol, 84 samples were analyzed. The study of unsaturated aldehydes was carried out by GC-NCI-MS (NH₃) analysis, while the study of fatty acids required the de-velopment of a quantification method by GC-TOF MS analysis after liquid-liquid extraction and deriva-tisation. The results show a significant impact of climatic conditions on the distribution of unsaturated aldehydes and fatty acids. For example, the highest levels of unsaturated aldehydes (1.5 ng/g wood (I) and 13.2 ng/g wood (II)) were detected in oak wood seasoned in Merpins and Beaumes-de-Venise (southern France) compared to that seasoned in Châlon-en-Champagne (northern France). Conversely, linolenic acid was detected at a higher level in seasoned oak wood in Châlon-en-Champagne (9.5 µg/g wood). It is likely that “warm” climates lead to a degradation of fatty acids in favor of the formation of unsaturated aldehydes. These new results underline the potential effect of global warming on the quality and sensory identity of oak wood and barrels. To go further, these samples were also toasted. The impact on the aroma of red wine will be discussed.

 

1. Courregelongue, M., Shinkaruk, S., Prida, A., Darriet, P., & Pons, A. (2022). Identification and Distribution of New Impact Aldehydes in Toasted Oak Wood ( Quercus petraea ). Journal of Agricultural and Food Chemistry, acs.jafc.2c01828. https://doi.org/10.1021/acs.jafc.2c01828

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Courregelongue 1,2,3, Andrei Prida 3, Alexandre Pons 1,2,3

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Seguin Moreau Cooperage, ZI Merpins, F-16103 Cognac, France

Contact the author*

Keywords

oak wood, fatty acids, unsaturated aldehydes, climate change

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.