terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

Abstract

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition. Many studies have been conducted to identify the key aroma compounds in oak wood, and in a recent work we re-ported the identification of two new unsaturated aldehydes responsible for the “puff pastry” and “me-tallic” nuances present in toasted oak wood aroma: (2E,4E,6Z)-nonatrienal (I) and trans-4,5-epoxy-(E)-2- decenal (II).1 In foods, these aldehydes are derived from the oxidative degradation of linolenic and linoleic acids, respectively. This degradation is promoted by heat, light and metal ions. However, no data are available on the presence of fatty acids in oak wood for oenological use (Quercus petraea). In this context, this work aimed to study the distribution of fatty acids in oak wood by focusing on the seaso-ning process taking into account the impact of climatic conditions. To do so, we studied in parallel the evolution and distribution of unsaturated aldehydes and fatty acids in seven oak wood staves during the seasoning process (0, 12, 18 and 36 months) depending on the location (Merpins, Châlon-en-Cham-pagne and Beaumes-de-Venise). They were selected for their climatic diversity (average temperature and rainfall). Based on this experimental protocol, 84 samples were analyzed. The study of unsaturated aldehydes was carried out by GC-NCI-MS (NH₃) analysis, while the study of fatty acids required the de-velopment of a quantification method by GC-TOF MS analysis after liquid-liquid extraction and deriva-tisation. The results show a significant impact of climatic conditions on the distribution of unsaturated aldehydes and fatty acids. For example, the highest levels of unsaturated aldehydes (1.5 ng/g wood (I) and 13.2 ng/g wood (II)) were detected in oak wood seasoned in Merpins and Beaumes-de-Venise (southern France) compared to that seasoned in Châlon-en-Champagne (northern France). Conversely, linolenic acid was detected at a higher level in seasoned oak wood in Châlon-en-Champagne (9.5 µg/g wood). It is likely that “warm” climates lead to a degradation of fatty acids in favor of the formation of unsaturated aldehydes. These new results underline the potential effect of global warming on the quality and sensory identity of oak wood and barrels. To go further, these samples were also toasted. The impact on the aroma of red wine will be discussed.

 

1. Courregelongue, M., Shinkaruk, S., Prida, A., Darriet, P., & Pons, A. (2022). Identification and Distribution of New Impact Aldehydes in Toasted Oak Wood ( Quercus petraea ). Journal of Agricultural and Food Chemistry, acs.jafc.2c01828. https://doi.org/10.1021/acs.jafc.2c01828

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Courregelongue 1,2,3, Andrei Prida 3, Alexandre Pons 1,2,3

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Seguin Moreau Cooperage, ZI Merpins, F-16103 Cognac, France

Contact the author*

Keywords

oak wood, fatty acids, unsaturated aldehydes, climate change

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.