terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

Abstract

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4

This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.5 Functionalized samples were analysed by gas chromatography coupled with a pulsed flame photometric detector (GC-PFPD) and olfactometry (GC-O) to optimize the reaction conditions. Analysis of functionalized oak wood organic extracts by GC-O and GC-PFPD led us to detect six OZ reminiscent of “meaty” nuances and associated with sulphur compounds. One of them was characterized by preparative multi-dimensional gas chromatography coupled with olfactometry and time of flight mass spectrometry (Prep-MDGC-O-TOF MS) and identified as 2-methoxybenzenethiol.

This thiol was also identified in red wines following extraction by SPE, separation and detection by means of GC-MS/MS (SRM mode). The validation of the quantification method was carried out before its use to study its distribution in wines, young and old from different appellations and according to the OTR (determined by coulometry) of the closure. We show that its concentration can reach the odour detection threshold determined at 607 ng/L. Following the same strategy, five other thiols reminiscent of “meaty” nuances, including 2,5-dimethylfuran-3-thiol, 5-methyl-2-furfurylthiol, o-toluenethiol, 2,6-dimethylbenzenethiol and 2,6-dimethoxybenzenethiol were also identified for the first time in red wines. Their sensory impact will also be discussed.

 

1. Picard, M.; Thibon, C.; Redon, P.; Darriet, P.; de Revel, G.; Marchand, S. Involvement of Dimethyl Sulfide and Several Polyfunctional Thiols in the Aromatic Expression of the Aging Bouquet of Red Bordeaux Wines. J. Agric. Food Chem. 2015, 63 (40), 8879–8889. https://doi.org/10.1021/acs.jafc.5b03977.
2. Pons, A.; Lavigne, V.; Suhas, E.; Thibon, C.; Redon, P.; Loisel, C.; Darriet, P. Impact of the Closure Oxygen Transfer Rate on Volatile Compound Composition and Oxidation Aroma Intensity of Merlot and Cabernet Sauvignon Blend: A 10 Year Study. J. Agric. Food Chem. 2022, 70 (51), 16358–16368. https://doi.org/10.1021/acs.jafc.2c07475.
3. Pons, A.; Lavigne, V.; Eric, F.; Darriet, P.; Dubourdieu, D. Identification of Volatile Compounds Responsible for Prune Aroma in Prematurely Aged Red Wines. J. Agric. Food Chem. 2008, 56 (13), 5285–5290. https://doi.org/10.1021/jf073513z.
4. Chen, L.; Darriet, P. Strategies for the Identification and Sensory Evaluation of Volatile Constituents in Wine. Compr. Rev. Food Sci. Food Saf. 2021, 20 (5), 4549–4583. https://doi.org/10.1111/1541-4337.12810.
5. Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. A Sensory Study of the Ageing Bouquet of Red Bordeaux Wines: A Three-Step Approach for Exploring a Complex Olfactory Concept. Food Qual. Prefer. 2015, 42, 110–122. https://doi.org/10.1016/j. foodqual.2015.01.014.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Emilie Suhas1,2,4, Svitlana Shinkaruk1,2, Alexandre Pons1,2,3

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France
4. Diam bouchage, Céret 66400, France

Contact the author*

Keywords

Red wines, Thiol compounds, Meaty aroma, Oak wood functionalisation strategy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.