terclim by ICS banner
IVES 9 IVES Conference Series 9 DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

Abstract

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration. Nowadays, online or in-line sensors for acetaldehyde monitoring during distillation do not exist and the online sensors for alcohol monitoring, based on density measurement, remain expensive for producers. In this work, we demonstrate the development of distillation monitoring sensors based on electrical impedance spectroscopy (EIS) measurements1-3, combined with PLS-R (partial least squares regression) modeling. Four types of sensors are proposed and tested with wine-based distillates. Using PLS-R, the best correlations were found for one electrode, named “SpotsSym”. With an R2 up to 89.9% for acetaldehyde concentration prediction and an R2 up to 86.8% for ethanol, the obtained results indicate the promising potential of the proposed approach. To our knowledge, this is the first report of sensors capable of simultaneously measuring ethanol and acetaldehyde concentrations. Furthermore, these sensors offer the advantages of being low-cost and non-destructive. Based on these results, the development of an in-line distillation monitoring system is possible in a near future, providing a promising tool for spirit beverages producers. Regarding the enology part, according to the preliminary results obtained by our research team, applications of our approach can also be developed for wine fermentations monitoring.

 

1. Zheng, S.; Fang, Q.; Cosic, I. An investigation on dielectric properties of major constituents of grape must using electrochemi-cal impedance spectroscopy. Eur. Food Res. Technol. 2009, 229 (6), 887-897.
2. Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sens. Sens. Syst. 2017, 6 (2), 303-325.
3. Caicedo-Eraso, J. C.; Díaz-Arango, F. O.; Osorio-Alturo, A. Electrical impedance spectroscopy applied to food industry quality control. Ciencia y Tecnología Agropecuaria 2020, 21 (1), 100-119.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Liming Zeng,¹ Arnaud Pernet,¹ Marilyn Cléroux,¹ Benoît Bach,¹ Lucas Froidevaux,² Ioana Preda²

1. Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2. iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author*

Keywords

Spirit beverages, acetaldehyde, ethanol, impedance spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.