terclim by ICS banner
IVES 9 IVES Conference Series 9 DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

Abstract

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration. Nowadays, online or in-line sensors for acetaldehyde monitoring during distillation do not exist and the online sensors for alcohol monitoring, based on density measurement, remain expensive for producers. In this work, we demonstrate the development of distillation monitoring sensors based on electrical impedance spectroscopy (EIS) measurements1-3, combined with PLS-R (partial least squares regression) modeling. Four types of sensors are proposed and tested with wine-based distillates. Using PLS-R, the best correlations were found for one electrode, named “SpotsSym”. With an R2 up to 89.9% for acetaldehyde concentration prediction and an R2 up to 86.8% for ethanol, the obtained results indicate the promising potential of the proposed approach. To our knowledge, this is the first report of sensors capable of simultaneously measuring ethanol and acetaldehyde concentrations. Furthermore, these sensors offer the advantages of being low-cost and non-destructive. Based on these results, the development of an in-line distillation monitoring system is possible in a near future, providing a promising tool for spirit beverages producers. Regarding the enology part, according to the preliminary results obtained by our research team, applications of our approach can also be developed for wine fermentations monitoring.

 

1. Zheng, S.; Fang, Q.; Cosic, I. An investigation on dielectric properties of major constituents of grape must using electrochemi-cal impedance spectroscopy. Eur. Food Res. Technol. 2009, 229 (6), 887-897.
2. Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sens. Sens. Syst. 2017, 6 (2), 303-325.
3. Caicedo-Eraso, J. C.; Díaz-Arango, F. O.; Osorio-Alturo, A. Electrical impedance spectroscopy applied to food industry quality control. Ciencia y Tecnología Agropecuaria 2020, 21 (1), 100-119.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Liming Zeng,¹ Arnaud Pernet,¹ Marilyn Cléroux,¹ Benoît Bach,¹ Lucas Froidevaux,² Ioana Preda²

1. Changins Viticulture and Enology College, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Nyon, Switzerland
2. iPrint Institute, University of Applied Sciences and Arts of Western Switzerland (HES-SO), Fribourg, Switzerland

Contact the author*

Keywords

Spirit beverages, acetaldehyde, ethanol, impedance spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.