terclim by ICS banner
IVES 9 IVES Conference Series 9 INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Abstract

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.
For that purpose, white grapes were harvested, pressed and diluted 5 times with a model grape must synthetic buffer at pH = 3.50 and supplemented or not with 20 mg/L of SO₂, 2 UA/mL of laccase activity and 250 mg/L of the selected M. pulcherrima MP1 (Level2 Initia™, Lallemand Inc, Montreal, Canada). Immediately, the samples were saturated with O₂ and its concentration was noninvasively monitored overtime by luminescence (Nomasense TM O₂ Trace Oxygen Analyzer by Nomacorc S.A., Thimister Clermont, Belgium) [3]. Once oxygen consumption attained an asymptotic behavior the samples were used for color analysis [4] and for HPLC analysis of HA [5].
As expected, in the absence of SO₂, the must actively consumed O₂ and HA, and it turned intensely brown whereas in the presence of SO₂, the O₂ consumption rate (OCR) was significant lower, the HA concentra- tion was maintained at significant higher levels and the yellow color intensity remained at low values. In presence of laccase, OCR and browning intensity were even higher than in control conditions and the supplementation with SO₂ reduced both parameters but not as much as in the control must. Inoculation with the selected M. pulcherrima MP1 increased significantly OCR and protected the must from BE since the final yellow color was significantly lower and the HA concentration significantly higher than in control conditions although this protection was not so effective as that of SO₂. It seems the- refore that selected M. pulcherrima MP1 consumes O₂ very effectively making that some of the initially dissolved O₂ is not consumed by PPOs. In the presence of laccase, the supplementation with MP also protected the must from browning but not so efficiently.
This data confirms that the use of the selected M. pulcherrima MP 1 can be an interesting tool for redu- cing the dose of SO₂ without affecting seriously its final color quality.
Acknowledges: This research was funded by CICYT (project RTI 2018-095658-B-C33).

 

1. Oliveira CM, Silva-Ferreira AC, De Freitas V, Silva AM (2011) Food Res Int 44:1115-1126.
2. Ough, C.S., Crowell, E.A. (1987) J. Food Sci., 52, 386-389.
3. Pons-Mercadé P, Anguela S, Giménez P, Heras JM, Sieczkowski N, Rozès N, Canals JM, Zamora F (2021) Oeno One 2:147-158.
4. Ayala F, Echavarri JF, Negueruela AI (1997) Am J Enol Vitic 48:364-369.
5. Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., Hermosín-Gutiérrez, I. (2011) J. Agric. Food Chem., 59, 8314−8323. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marco Bustamante¹, Pol Giménez¹, Arnau Just-Borras¹, Ignasi Solé-Clua¹, Jordi Gombau¹, José M. Heras², Nathalie Sieczkowski², Mariona Gil³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona, Spain
3. Instituto de Ciencias Químicas Aplicadas. Facultad de Ingenieria. Universidad Autónoma de Chile. Sede Santiago, Campus Providencia. Av. Pedro de Valdivia 425, Providencia, Santiago. Chile

Contact the author*

Keywords

Metschnikowia pulcherrima, Browning, SO₂ alternative, Bioprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.