terclim by ICS banner
IVES 9 IVES Conference Series 9 INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Abstract

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.
For that purpose, white grapes were harvested, pressed and diluted 5 times with a model grape must synthetic buffer at pH = 3.50 and supplemented or not with 20 mg/L of SO₂, 2 UA/mL of laccase activity and 250 mg/L of the selected M. pulcherrima MP1 (Level2 Initia™, Lallemand Inc, Montreal, Canada). Immediately, the samples were saturated with O₂ and its concentration was noninvasively monitored overtime by luminescence (Nomasense TM O₂ Trace Oxygen Analyzer by Nomacorc S.A., Thimister Clermont, Belgium) [3]. Once oxygen consumption attained an asymptotic behavior the samples were used for color analysis [4] and for HPLC analysis of HA [5].
As expected, in the absence of SO₂, the must actively consumed O₂ and HA, and it turned intensely brown whereas in the presence of SO₂, the O₂ consumption rate (OCR) was significant lower, the HA concentra- tion was maintained at significant higher levels and the yellow color intensity remained at low values. In presence of laccase, OCR and browning intensity were even higher than in control conditions and the supplementation with SO₂ reduced both parameters but not as much as in the control must. Inoculation with the selected M. pulcherrima MP1 increased significantly OCR and protected the must from BE since the final yellow color was significantly lower and the HA concentration significantly higher than in control conditions although this protection was not so effective as that of SO₂. It seems the- refore that selected M. pulcherrima MP1 consumes O₂ very effectively making that some of the initially dissolved O₂ is not consumed by PPOs. In the presence of laccase, the supplementation with MP also protected the must from browning but not so efficiently.
This data confirms that the use of the selected M. pulcherrima MP 1 can be an interesting tool for redu- cing the dose of SO₂ without affecting seriously its final color quality.
Acknowledges: This research was funded by CICYT (project RTI 2018-095658-B-C33).

 

1. Oliveira CM, Silva-Ferreira AC, De Freitas V, Silva AM (2011) Food Res Int 44:1115-1126.
2. Ough, C.S., Crowell, E.A. (1987) J. Food Sci., 52, 386-389.
3. Pons-Mercadé P, Anguela S, Giménez P, Heras JM, Sieczkowski N, Rozès N, Canals JM, Zamora F (2021) Oeno One 2:147-158.
4. Ayala F, Echavarri JF, Negueruela AI (1997) Am J Enol Vitic 48:364-369.
5. Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., Hermosín-Gutiérrez, I. (2011) J. Agric. Food Chem., 59, 8314−8323. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marco Bustamante¹, Pol Giménez¹, Arnau Just-Borras¹, Ignasi Solé-Clua¹, Jordi Gombau¹, José M. Heras², Nathalie Sieczkowski², Mariona Gil³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona, Spain
3. Instituto de Ciencias Químicas Aplicadas. Facultad de Ingenieria. Universidad Autónoma de Chile. Sede Santiago, Campus Providencia. Av. Pedro de Valdivia 425, Providencia, Santiago. Chile

Contact the author*

Keywords

Metschnikowia pulcherrima, Browning, SO₂ alternative, Bioprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.