terclim by ICS banner
IVES 9 IVES Conference Series 9 INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Abstract

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.
For that purpose, white grapes were harvested, pressed and diluted 5 times with a model grape must synthetic buffer at pH = 3.50 and supplemented or not with 20 mg/L of SO₂, 2 UA/mL of laccase activity and 250 mg/L of the selected M. pulcherrima MP1 (Level2 Initia™, Lallemand Inc, Montreal, Canada). Immediately, the samples were saturated with O₂ and its concentration was noninvasively monitored overtime by luminescence (Nomasense TM O₂ Trace Oxygen Analyzer by Nomacorc S.A., Thimister Clermont, Belgium) [3]. Once oxygen consumption attained an asymptotic behavior the samples were used for color analysis [4] and for HPLC analysis of HA [5].
As expected, in the absence of SO₂, the must actively consumed O₂ and HA, and it turned intensely brown whereas in the presence of SO₂, the O₂ consumption rate (OCR) was significant lower, the HA concentra- tion was maintained at significant higher levels and the yellow color intensity remained at low values. In presence of laccase, OCR and browning intensity were even higher than in control conditions and the supplementation with SO₂ reduced both parameters but not as much as in the control must. Inoculation with the selected M. pulcherrima MP1 increased significantly OCR and protected the must from BE since the final yellow color was significantly lower and the HA concentration significantly higher than in control conditions although this protection was not so effective as that of SO₂. It seems the- refore that selected M. pulcherrima MP1 consumes O₂ very effectively making that some of the initially dissolved O₂ is not consumed by PPOs. In the presence of laccase, the supplementation with MP also protected the must from browning but not so efficiently.
This data confirms that the use of the selected M. pulcherrima MP 1 can be an interesting tool for redu- cing the dose of SO₂ without affecting seriously its final color quality.
Acknowledges: This research was funded by CICYT (project RTI 2018-095658-B-C33).

 

1. Oliveira CM, Silva-Ferreira AC, De Freitas V, Silva AM (2011) Food Res Int 44:1115-1126.
2. Ough, C.S., Crowell, E.A. (1987) J. Food Sci., 52, 386-389.
3. Pons-Mercadé P, Anguela S, Giménez P, Heras JM, Sieczkowski N, Rozès N, Canals JM, Zamora F (2021) Oeno One 2:147-158.
4. Ayala F, Echavarri JF, Negueruela AI (1997) Am J Enol Vitic 48:364-369.
5. Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., Hermosín-Gutiérrez, I. (2011) J. Agric. Food Chem., 59, 8314−8323. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marco Bustamante¹, Pol Giménez¹, Arnau Just-Borras¹, Ignasi Solé-Clua¹, Jordi Gombau¹, José M. Heras², Nathalie Sieczkowski², Mariona Gil³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona, Spain
3. Instituto de Ciencias Químicas Aplicadas. Facultad de Ingenieria. Universidad Autónoma de Chile. Sede Santiago, Campus Providencia. Av. Pedro de Valdivia 425, Providencia, Santiago. Chile

Contact the author*

Keywords

Metschnikowia pulcherrima, Browning, SO₂ alternative, Bioprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2 One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.