terclim by ICS banner
IVES 9 IVES Conference Series 9 INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Abstract

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.
For that purpose, white grapes were harvested, pressed and diluted 5 times with a model grape must synthetic buffer at pH = 3.50 and supplemented or not with 20 mg/L of SO₂, 2 UA/mL of laccase activity and 250 mg/L of the selected M. pulcherrima MP1 (Level2 Initia™, Lallemand Inc, Montreal, Canada). Immediately, the samples were saturated with O₂ and its concentration was noninvasively monitored overtime by luminescence (Nomasense TM O₂ Trace Oxygen Analyzer by Nomacorc S.A., Thimister Clermont, Belgium) [3]. Once oxygen consumption attained an asymptotic behavior the samples were used for color analysis [4] and for HPLC analysis of HA [5].
As expected, in the absence of SO₂, the must actively consumed O₂ and HA, and it turned intensely brown whereas in the presence of SO₂, the O₂ consumption rate (OCR) was significant lower, the HA concentra- tion was maintained at significant higher levels and the yellow color intensity remained at low values. In presence of laccase, OCR and browning intensity were even higher than in control conditions and the supplementation with SO₂ reduced both parameters but not as much as in the control must. Inoculation with the selected M. pulcherrima MP1 increased significantly OCR and protected the must from BE since the final yellow color was significantly lower and the HA concentration significantly higher than in control conditions although this protection was not so effective as that of SO₂. It seems the- refore that selected M. pulcherrima MP1 consumes O₂ very effectively making that some of the initially dissolved O₂ is not consumed by PPOs. In the presence of laccase, the supplementation with MP also protected the must from browning but not so efficiently.
This data confirms that the use of the selected M. pulcherrima MP 1 can be an interesting tool for redu- cing the dose of SO₂ without affecting seriously its final color quality.
Acknowledges: This research was funded by CICYT (project RTI 2018-095658-B-C33).

 

1. Oliveira CM, Silva-Ferreira AC, De Freitas V, Silva AM (2011) Food Res Int 44:1115-1126.
2. Ough, C.S., Crowell, E.A. (1987) J. Food Sci., 52, 386-389.
3. Pons-Mercadé P, Anguela S, Giménez P, Heras JM, Sieczkowski N, Rozès N, Canals JM, Zamora F (2021) Oeno One 2:147-158.
4. Ayala F, Echavarri JF, Negueruela AI (1997) Am J Enol Vitic 48:364-369.
5. Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., Hermosín-Gutiérrez, I. (2011) J. Agric. Food Chem., 59, 8314−8323. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marco Bustamante¹, Pol Giménez¹, Arnau Just-Borras¹, Ignasi Solé-Clua¹, Jordi Gombau¹, José M. Heras², Nathalie Sieczkowski², Mariona Gil³, Joan Miquel Canals¹, Fernando Zamora1*

1. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
2. Lallemand Bio S.L. C/ Galileu 303. 1ª planta. 08028-Barcelona, Spain
3. Instituto de Ciencias Químicas Aplicadas. Facultad de Ingenieria. Universidad Autónoma de Chile. Sede Santiago, Campus Providencia. Av. Pedro de Valdivia 425, Providencia, Santiago. Chile

Contact the author*

Keywords

Metschnikowia pulcherrima, Browning, SO₂ alternative, Bioprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.