terclim by ICS banner
IVES 9 IVES Conference Series 9 INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

Abstract

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

The degradation by PL with a LPBox (Sanodev) of 20 pesticides widely used in viticulture was studied by HPLC-MS/MS. Firstly, untargeted analyses were performed in order to observe secondary metabolites formed during PL treatments. This study allowed to detect 118 metabolites and 53 hypotheses of structures were proposed using m/z, isotopic patterns of the molecules containing halogens as well as results previously obtained in the literature. Then, a quantitative method was built for the 20 studied pesticides and for the compounds previously identified as secondary metabolites. Two transitions per compound were used following fragmentation experiments. The developed MRM method allows absolute quanti- fication of the parent molecules and relative quantification of 87 major secondary metabolites. In order to further study the degradation ability of LPBox on pesticides, 7 pesticides were selected because of their rapid degradation with PL. An optimization was made to identify the number of pulses needed to degrade the 7 pesticides. These experiments show that the different light rays produced by LPBox are able to degrade pesticides from their LC50 (Daphnia Magna) to a concentration lower than their limit of quantification (LOQ). These experiments also demonstrate that it is possible to relatively quantify secondary metabolites of pesticides after PL treatment. Real wastewater samples were also treated by PL showing effective degradation of pesticides.

In conclusion, our results proved that PL has an effective impact on all pesticides treated although the fluence needed is molecule-dependent. An optimization in terms of fluence showed that it was possible to degrade pesticides from a toxic concentration to a concentration below the LOQ.

 

1. Baranda, A. B.; Lasagabaster, A.; de Marañón, I. M. Static and Continuous Flow-through Pulsed Light Technology for Pesti-cide Abatement in Water. Journal of Hazardous Materials 2017, 340, 140–151. https://doi.org/10.1016/j.jhazmat.2017.07.012.
2. Lassalle, Y.; Kinani, A.; Rifai, A.; Souissi, Y.; Clavaguera, C.; Bourcier, S.; Jaber, F.; Bouchonnet, S. UV-Visible Degradation of Boscalid – Structural Characterization of Photoproducts and Potential Toxicity Using in Silico Tests: UV-Visible Degradation of Boscalid. Rapid Commun. Mass Spectrom. 2014, 28 (10), 1153–1163. https://doi.org/10.1002/rcm.6880.
3. Maheswari, M. A.; Lamshöft, M.; Sukul, P.; Spiteller, P.; Zühlke, S.; Spiteller, M. Photochemical Analysis of 14C-Fenhexa-mid in Aqueous Solution and Structural Elucidation of a New Metabolite. Chemosphere 2010, 81 (7), 844–852. https://doi. org/10.1016/j.chemosphere.2010.08.013. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

F. Clavero¹,², R. Ghidossi¹, N. Picard², F. Meytraud², G. de Revel¹ and C. Franc¹

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Or-non, France
2. SANODEV, 1, Avenue d’ESTER  – 87 100 LIMOGES

Contact the author*

Keywords

Photo-degradation, phytosanitary products, metabolites, wastewater

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.