terclim by ICS banner
IVES 9 IVES Conference Series 9 INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

Abstract

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

The degradation by PL with a LPBox (Sanodev) of 20 pesticides widely used in viticulture was studied by HPLC-MS/MS. Firstly, untargeted analyses were performed in order to observe secondary metabolites formed during PL treatments. This study allowed to detect 118 metabolites and 53 hypotheses of structures were proposed using m/z, isotopic patterns of the molecules containing halogens as well as results previously obtained in the literature. Then, a quantitative method was built for the 20 studied pesticides and for the compounds previously identified as secondary metabolites. Two transitions per compound were used following fragmentation experiments. The developed MRM method allows absolute quanti- fication of the parent molecules and relative quantification of 87 major secondary metabolites. In order to further study the degradation ability of LPBox on pesticides, 7 pesticides were selected because of their rapid degradation with PL. An optimization was made to identify the number of pulses needed to degrade the 7 pesticides. These experiments show that the different light rays produced by LPBox are able to degrade pesticides from their LC50 (Daphnia Magna) to a concentration lower than their limit of quantification (LOQ). These experiments also demonstrate that it is possible to relatively quantify secondary metabolites of pesticides after PL treatment. Real wastewater samples were also treated by PL showing effective degradation of pesticides.

In conclusion, our results proved that PL has an effective impact on all pesticides treated although the fluence needed is molecule-dependent. An optimization in terms of fluence showed that it was possible to degrade pesticides from a toxic concentration to a concentration below the LOQ.

 

1. Baranda, A. B.; Lasagabaster, A.; de Marañón, I. M. Static and Continuous Flow-through Pulsed Light Technology for Pesti-cide Abatement in Water. Journal of Hazardous Materials 2017, 340, 140–151. https://doi.org/10.1016/j.jhazmat.2017.07.012.
2. Lassalle, Y.; Kinani, A.; Rifai, A.; Souissi, Y.; Clavaguera, C.; Bourcier, S.; Jaber, F.; Bouchonnet, S. UV-Visible Degradation of Boscalid – Structural Characterization of Photoproducts and Potential Toxicity Using in Silico Tests: UV-Visible Degradation of Boscalid. Rapid Commun. Mass Spectrom. 2014, 28 (10), 1153–1163. https://doi.org/10.1002/rcm.6880.
3. Maheswari, M. A.; Lamshöft, M.; Sukul, P.; Spiteller, P.; Zühlke, S.; Spiteller, M. Photochemical Analysis of 14C-Fenhexa-mid in Aqueous Solution and Structural Elucidation of a New Metabolite. Chemosphere 2010, 81 (7), 844–852. https://doi. org/10.1016/j.chemosphere.2010.08.013. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

F. Clavero¹,², R. Ghidossi¹, N. Picard², F. Meytraud², G. de Revel¹ and C. Franc¹

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Or-non, France
2. SANODEV, 1, Avenue d’ESTER  – 87 100 LIMOGES

Contact the author*

Keywords

Photo-degradation, phytosanitary products, metabolites, wastewater

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.