terclim by ICS banner
IVES 9 IVES Conference Series 9 INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

Abstract

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

The degradation by PL with a LPBox (Sanodev) of 20 pesticides widely used in viticulture was studied by HPLC-MS/MS. Firstly, untargeted analyses were performed in order to observe secondary metabolites formed during PL treatments. This study allowed to detect 118 metabolites and 53 hypotheses of structures were proposed using m/z, isotopic patterns of the molecules containing halogens as well as results previously obtained in the literature. Then, a quantitative method was built for the 20 studied pesticides and for the compounds previously identified as secondary metabolites. Two transitions per compound were used following fragmentation experiments. The developed MRM method allows absolute quanti- fication of the parent molecules and relative quantification of 87 major secondary metabolites. In order to further study the degradation ability of LPBox on pesticides, 7 pesticides were selected because of their rapid degradation with PL. An optimization was made to identify the number of pulses needed to degrade the 7 pesticides. These experiments show that the different light rays produced by LPBox are able to degrade pesticides from their LC50 (Daphnia Magna) to a concentration lower than their limit of quantification (LOQ). These experiments also demonstrate that it is possible to relatively quantify secondary metabolites of pesticides after PL treatment. Real wastewater samples were also treated by PL showing effective degradation of pesticides.

In conclusion, our results proved that PL has an effective impact on all pesticides treated although the fluence needed is molecule-dependent. An optimization in terms of fluence showed that it was possible to degrade pesticides from a toxic concentration to a concentration below the LOQ.

 

1. Baranda, A. B.; Lasagabaster, A.; de Marañón, I. M. Static and Continuous Flow-through Pulsed Light Technology for Pesti-cide Abatement in Water. Journal of Hazardous Materials 2017, 340, 140–151. https://doi.org/10.1016/j.jhazmat.2017.07.012.
2. Lassalle, Y.; Kinani, A.; Rifai, A.; Souissi, Y.; Clavaguera, C.; Bourcier, S.; Jaber, F.; Bouchonnet, S. UV-Visible Degradation of Boscalid – Structural Characterization of Photoproducts and Potential Toxicity Using in Silico Tests: UV-Visible Degradation of Boscalid. Rapid Commun. Mass Spectrom. 2014, 28 (10), 1153–1163. https://doi.org/10.1002/rcm.6880.
3. Maheswari, M. A.; Lamshöft, M.; Sukul, P.; Spiteller, P.; Zühlke, S.; Spiteller, M. Photochemical Analysis of 14C-Fenhexa-mid in Aqueous Solution and Structural Elucidation of a New Metabolite. Chemosphere 2010, 81 (7), 844–852. https://doi. org/10.1016/j.chemosphere.2010.08.013. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

F. Clavero¹,², R. Ghidossi¹, N. Picard², F. Meytraud², G. de Revel¹ and C. Franc¹

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Or-non, France
2. SANODEV, 1, Avenue d’ESTER  – 87 100 LIMOGES

Contact the author*

Keywords

Photo-degradation, phytosanitary products, metabolites, wastewater

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.