terclim by ICS banner
IVES 9 IVES Conference Series 9 INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

Abstract

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

The degradation by PL with a LPBox (Sanodev) of 20 pesticides widely used in viticulture was studied by HPLC-MS/MS. Firstly, untargeted analyses were performed in order to observe secondary metabolites formed during PL treatments. This study allowed to detect 118 metabolites and 53 hypotheses of structures were proposed using m/z, isotopic patterns of the molecules containing halogens as well as results previously obtained in the literature. Then, a quantitative method was built for the 20 studied pesticides and for the compounds previously identified as secondary metabolites. Two transitions per compound were used following fragmentation experiments. The developed MRM method allows absolute quanti- fication of the parent molecules and relative quantification of 87 major secondary metabolites. In order to further study the degradation ability of LPBox on pesticides, 7 pesticides were selected because of their rapid degradation with PL. An optimization was made to identify the number of pulses needed to degrade the 7 pesticides. These experiments show that the different light rays produced by LPBox are able to degrade pesticides from their LC50 (Daphnia Magna) to a concentration lower than their limit of quantification (LOQ). These experiments also demonstrate that it is possible to relatively quantify secondary metabolites of pesticides after PL treatment. Real wastewater samples were also treated by PL showing effective degradation of pesticides.

In conclusion, our results proved that PL has an effective impact on all pesticides treated although the fluence needed is molecule-dependent. An optimization in terms of fluence showed that it was possible to degrade pesticides from a toxic concentration to a concentration below the LOQ.

 

1. Baranda, A. B.; Lasagabaster, A.; de Marañón, I. M. Static and Continuous Flow-through Pulsed Light Technology for Pesti-cide Abatement in Water. Journal of Hazardous Materials 2017, 340, 140–151. https://doi.org/10.1016/j.jhazmat.2017.07.012.
2. Lassalle, Y.; Kinani, A.; Rifai, A.; Souissi, Y.; Clavaguera, C.; Bourcier, S.; Jaber, F.; Bouchonnet, S. UV-Visible Degradation of Boscalid – Structural Characterization of Photoproducts and Potential Toxicity Using in Silico Tests: UV-Visible Degradation of Boscalid. Rapid Commun. Mass Spectrom. 2014, 28 (10), 1153–1163. https://doi.org/10.1002/rcm.6880.
3. Maheswari, M. A.; Lamshöft, M.; Sukul, P.; Spiteller, P.; Zühlke, S.; Spiteller, M. Photochemical Analysis of 14C-Fenhexa-mid in Aqueous Solution and Structural Elucidation of a New Metabolite. Chemosphere 2010, 81 (7), 844–852. https://doi. org/10.1016/j.chemosphere.2010.08.013. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

F. Clavero¹,², R. Ghidossi¹, N. Picard², F. Meytraud², G. de Revel¹ and C. Franc¹

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Or-non, France
2. SANODEV, 1, Avenue d’ESTER  – 87 100 LIMOGES

Contact the author*

Keywords

Photo-degradation, phytosanitary products, metabolites, wastewater

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.