terclim by ICS banner
IVES 9 IVES Conference Series 9 MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Abstract

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile. This integrative approach was used for the first time in the context of bioprotection on white wine. The analysis of classical oenological parameters did not reveal any differences between the two treatments. However, the use of sulfites in the pre-fermentation stage seemed to induce a higher antioxidant capacity than bioprotection in wine. This result was confirmed by the decrease in the concentration of some phenolic compounds in the bioprotected wines. UHPLC-q-ToF-MS analysis of finished wines revealed specific footprints reflecting the impact of each treatment. As a result, 618 biomarkers were associated to sulfite treatment, mainly represented by CHON compounds, which could correspond to peptides. Moreover, bioprotection treatment was characterized by 364 biomarkers, including predominantly lipids. These highlighted biomarkers could be associated with various metabolic pathways such as amino acid biosynthesis and cofactors biosynthesis. These important differences in metabolite composition observed between the wines could be explained by the presence or the absence of sulfites, known for their effects on yeast metabolism and wine compounds. In contrast to metabolomic analysis, a very small difference was perceived between the two treatment from a sensory point of view. Thus, this study revealed substantial changes in wines regarding their composition, without impacting their sensory profile. This integrated approach has provided new knowledge on the impact of sulfite substitution by bioprotection on Chardonnay wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Manon Lebleux¹, Hervé Alexandre¹, Rémy Romanet¹, Jordi Ballester², Vanessa David-Vaizant¹, Marielle Adrian³, Raphaëlle Tour-dot-Maréchal¹, Chloé Rouiller-Gall¹

1. Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Université Bourgogne Franche-Comté, 21000 Dijon, France
2. Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
3. Agroécologie, Institut Agro Dijon, CNRS, INRAE, Univ. Bourgogne, Université Bourgogne Franche-Comté, Dijon, France

Contact the author*

Keywords

metabolomic, sensory, integrative approach, alternative

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.