terclim by ICS banner
IVES 9 IVES Conference Series 9 MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Abstract

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile. This integrative approach was used for the first time in the context of bioprotection on white wine. The analysis of classical oenological parameters did not reveal any differences between the two treatments. However, the use of sulfites in the pre-fermentation stage seemed to induce a higher antioxidant capacity than bioprotection in wine. This result was confirmed by the decrease in the concentration of some phenolic compounds in the bioprotected wines. UHPLC-q-ToF-MS analysis of finished wines revealed specific footprints reflecting the impact of each treatment. As a result, 618 biomarkers were associated to sulfite treatment, mainly represented by CHON compounds, which could correspond to peptides. Moreover, bioprotection treatment was characterized by 364 biomarkers, including predominantly lipids. These highlighted biomarkers could be associated with various metabolic pathways such as amino acid biosynthesis and cofactors biosynthesis. These important differences in metabolite composition observed between the wines could be explained by the presence or the absence of sulfites, known for their effects on yeast metabolism and wine compounds. In contrast to metabolomic analysis, a very small difference was perceived between the two treatment from a sensory point of view. Thus, this study revealed substantial changes in wines regarding their composition, without impacting their sensory profile. This integrated approach has provided new knowledge on the impact of sulfite substitution by bioprotection on Chardonnay wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Manon Lebleux¹, Hervé Alexandre¹, Rémy Romanet¹, Jordi Ballester², Vanessa David-Vaizant¹, Marielle Adrian³, Raphaëlle Tour-dot-Maréchal¹, Chloé Rouiller-Gall¹

1. Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, Université Bourgogne Franche-Comté, 21000 Dijon, France
2. Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
3. Agroécologie, Institut Agro Dijon, CNRS, INRAE, Univ. Bourgogne, Université Bourgogne Franche-Comté, Dijon, France

Contact the author*

Keywords

metabolomic, sensory, integrative approach, alternative

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].