terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Abstract

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied. In total, 18 fungal isolates, belonging to 7 genera and 9 species, were selected based on their off-odor production profiles on malt medium among 685 isolates from our working collection. Growth rates were measured using solid synthetic must (MS) and real must (MR) and compared to those obtained in liquid must by laser nephelometry. Sensorial analysis and VOC profiles (GC-MS) were also determined for the same isolates, individually or in co-cultures with two FMA producing Botrytis isolates, after growth on must and grapes. Among the generated physiological data, optimal growth temperatures were 27-28°C, 26-30°C, 21-22°C for Botrytis spp., Penicillium crocicola and P. citreonigrum, respectively, depending on the isolate. Fastest growth rates were observed for B. cinerea and P. crocicola, while Cladosporium subtilissimum and P. brevicompactum isolates were slowest. For VOC profiles, P. crocicola, P. bialowiezense and Clonostachys rosea produced known FMA compounds (1-octen-3-one and 1-octen-3-ol) at higher levels when co-inoculated with Botrytis spp. on grapes. For must trials, a species effect on VOC profiles was clearly observed (92 VOC identified). To confirm these findings, further co-inoculation studies were performed on two grape varieties (Meunier and Pinot noir) and, so far, sensorial analyses showed similar trends. Overall, this study provides novel knowledge about changes in fungal growth kinetics and VOC profiles in musts and on grapes. These results provide new insights for the wine making to better understand how FMA off-flavors are generated by molds.

 

1. Scott et al, 2022 doi.org/10.1016/B978-0-08-102067-8.00006-3
2. Steel et al, 2013 doi.org/10.1021/jf400641r
3. Rousseaux et al 2014 doi:10.1016/j.fm.2013.08.013
4. La Guerche et al, 2006 doi.org/10.1016/B978-0-08-102067-8.00006-3
5. Meistermann et al, 2020 (DOI:10.20870/oeno-one.2021.55.3.3004)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adrien Destanque1,2, Alexis Commereuc1, Flora Pensec1, Adeline Picot1, Anne Thierry3, Marie-Bernadette Maillard3, Louis Corol-ler, Sylvie Treguer-Fernandez1, Emmanuel Coton1, Marion Hervé2 and Monika Coton1*

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, F-51530 Oiry, France
3. INRAE, Institut Agro, UMR STLO, F-35000 Rennes, France

Contact the author*

Keywords

Mycobiot, growth modeling, volatile organic compounds (VOCs)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.