terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Abstract

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied. In total, 18 fungal isolates, belonging to 7 genera and 9 species, were selected based on their off-odor production profiles on malt medium among 685 isolates from our working collection. Growth rates were measured using solid synthetic must (MS) and real must (MR) and compared to those obtained in liquid must by laser nephelometry. Sensorial analysis and VOC profiles (GC-MS) were also determined for the same isolates, individually or in co-cultures with two FMA producing Botrytis isolates, after growth on must and grapes. Among the generated physiological data, optimal growth temperatures were 27-28°C, 26-30°C, 21-22°C for Botrytis spp., Penicillium crocicola and P. citreonigrum, respectively, depending on the isolate. Fastest growth rates were observed for B. cinerea and P. crocicola, while Cladosporium subtilissimum and P. brevicompactum isolates were slowest. For VOC profiles, P. crocicola, P. bialowiezense and Clonostachys rosea produced known FMA compounds (1-octen-3-one and 1-octen-3-ol) at higher levels when co-inoculated with Botrytis spp. on grapes. For must trials, a species effect on VOC profiles was clearly observed (92 VOC identified). To confirm these findings, further co-inoculation studies were performed on two grape varieties (Meunier and Pinot noir) and, so far, sensorial analyses showed similar trends. Overall, this study provides novel knowledge about changes in fungal growth kinetics and VOC profiles in musts and on grapes. These results provide new insights for the wine making to better understand how FMA off-flavors are generated by molds.

 

1. Scott et al, 2022 doi.org/10.1016/B978-0-08-102067-8.00006-3
2. Steel et al, 2013 doi.org/10.1021/jf400641r
3. Rousseaux et al 2014 doi:10.1016/j.fm.2013.08.013
4. La Guerche et al, 2006 doi.org/10.1016/B978-0-08-102067-8.00006-3
5. Meistermann et al, 2020 (DOI:10.20870/oeno-one.2021.55.3.3004)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adrien Destanque1,2, Alexis Commereuc1, Flora Pensec1, Adeline Picot1, Anne Thierry3, Marie-Bernadette Maillard3, Louis Corol-ler, Sylvie Treguer-Fernandez1, Emmanuel Coton1, Marion Hervé2 and Monika Coton1*

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, F-51530 Oiry, France
3. INRAE, Institut Agro, UMR STLO, F-35000 Rennes, France

Contact the author*

Keywords

Mycobiot, growth modeling, volatile organic compounds (VOCs)

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.