terclim by ICS banner
IVES 9 IVES Conference Series 9 FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Abstract

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet. Finally, nitrogen compounds affect the development of alcoholic fermentation and the formation of flavour metabolites. Different approaches have been studied to improve the wine quality. Foliar application of elicitors and nitrogen compounds to vineyard has been studied to palliate the effects of climate change in grape composition, and therefore, to enhance grape and wine quality. Methyl jasmonate (MeJ) is an elicitor able to trigger a response of defense in plants, that induces the production of secondary metabolites. Urea is a nitrogen fertilizer widespread employed due to its small molecular size, higher water solubility, and low cost. MeJ and urea (Ur) have been studied separately as a foliar application in vines. Describing an en-hance of volatile, phenolic and nitrogen compounds in grapes, although their effect in wines sometimes is less evident. In this trial, three treatments were carried out as foliar application: Control, MeJ and MeJ+Ur, during two growing seasons (2019 and 2020) in Tempranillo vineyard. The analysis of phenolic and nitrogen compounds were carried out by HPLC-DAD [1, 2]. Volatile compounds were determined by SPME-GC-MS [3]. The effect of foliar treatments was season dependent. In 2019, MeJ and MeJ+Ur wines were characterized by a higher content of total acylated anthocyanins, but a lower content of total esters, alcohols and acids than control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in 2020, MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control. Overall, the synergic effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.

 

1. González-Lázaro M., Sáenz de Urturi I., Murillo-Peña R., Marín-San Román S., Pérez-Álvarez E.P., Rubio-Bretón P., Garde-Cerdán T. (2022) Effect of methyl jasmonate and methyl jasmonate plus urea foliar applications on wine phenolic, aromatic and nitrogen composition. Beverages, 8, art. no. 52. DOI: 10.3390/beverages8030052
2. Pérez-Álvarez E.P., Rubio-Bretón P., Intrigliolo D.S., Parra-Torrejón B., Ramírez-Rodríguez G.B., Delgado-López J.M., Garde-Cerdán T. (2022) Year, watering regime and foliar methyl jasmonate doped nanoparticles treatments: Effects on must ni-trogen compounds in Monastrell grapes. Scientia Horticulturae, 297, art. no. 110944. DOI: 10.1016/j.scienta.2022.110944
3. Garde-Cerdán T., Rubio-Bretón P., Marín-San Román S., Sáenz de Urturi I., Pérez-Álvarez E.P. (2021) Pre-fermentative maceration with SO₂ enhanced the must aromatic composition. Food Chemistry, 345, art. no. 128870. DOI: 10.1016/j.food-chem.2020.128870

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Miriam González-Lázaro, Itziar Sáenz de Urturi, Rebeca Murillo-Peña, Sandra Marín-San Román, Lesly Torres-Díaz, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán

Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (ICVV; CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, km. 6, 26007 Logroño, Spain

Contact the author*

Keywords

elicitor, nitrogen fertilizer, quality, Vitis vinifera

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.