terclim by ICS banner
IVES 9 IVES Conference Series 9 FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Abstract

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet. Finally, nitrogen compounds affect the development of alcoholic fermentation and the formation of flavour metabolites. Different approaches have been studied to improve the wine quality. Foliar application of elicitors and nitrogen compounds to vineyard has been studied to palliate the effects of climate change in grape composition, and therefore, to enhance grape and wine quality. Methyl jasmonate (MeJ) is an elicitor able to trigger a response of defense in plants, that induces the production of secondary metabolites. Urea is a nitrogen fertilizer widespread employed due to its small molecular size, higher water solubility, and low cost. MeJ and urea (Ur) have been studied separately as a foliar application in vines. Describing an en-hance of volatile, phenolic and nitrogen compounds in grapes, although their effect in wines sometimes is less evident. In this trial, three treatments were carried out as foliar application: Control, MeJ and MeJ+Ur, during two growing seasons (2019 and 2020) in Tempranillo vineyard. The analysis of phenolic and nitrogen compounds were carried out by HPLC-DAD [1, 2]. Volatile compounds were determined by SPME-GC-MS [3]. The effect of foliar treatments was season dependent. In 2019, MeJ and MeJ+Ur wines were characterized by a higher content of total acylated anthocyanins, but a lower content of total esters, alcohols and acids than control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in 2020, MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control. Overall, the synergic effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.

 

1. González-Lázaro M., Sáenz de Urturi I., Murillo-Peña R., Marín-San Román S., Pérez-Álvarez E.P., Rubio-Bretón P., Garde-Cerdán T. (2022) Effect of methyl jasmonate and methyl jasmonate plus urea foliar applications on wine phenolic, aromatic and nitrogen composition. Beverages, 8, art. no. 52. DOI: 10.3390/beverages8030052
2. Pérez-Álvarez E.P., Rubio-Bretón P., Intrigliolo D.S., Parra-Torrejón B., Ramírez-Rodríguez G.B., Delgado-López J.M., Garde-Cerdán T. (2022) Year, watering regime and foliar methyl jasmonate doped nanoparticles treatments: Effects on must ni-trogen compounds in Monastrell grapes. Scientia Horticulturae, 297, art. no. 110944. DOI: 10.1016/j.scienta.2022.110944
3. Garde-Cerdán T., Rubio-Bretón P., Marín-San Román S., Sáenz de Urturi I., Pérez-Álvarez E.P. (2021) Pre-fermentative maceration with SO₂ enhanced the must aromatic composition. Food Chemistry, 345, art. no. 128870. DOI: 10.1016/j.food-chem.2020.128870

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Miriam González-Lázaro, Itziar Sáenz de Urturi, Rebeca Murillo-Peña, Sandra Marín-San Román, Lesly Torres-Díaz, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán

Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (ICVV; CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, km. 6, 26007 Logroño, Spain

Contact the author*

Keywords

elicitor, nitrogen fertilizer, quality, Vitis vinifera

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.