terclim by ICS banner
IVES 9 IVES Conference Series 9 FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Abstract

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet. Finally, nitrogen compounds affect the development of alcoholic fermentation and the formation of flavour metabolites. Different approaches have been studied to improve the wine quality. Foliar application of elicitors and nitrogen compounds to vineyard has been studied to palliate the effects of climate change in grape composition, and therefore, to enhance grape and wine quality. Methyl jasmonate (MeJ) is an elicitor able to trigger a response of defense in plants, that induces the production of secondary metabolites. Urea is a nitrogen fertilizer widespread employed due to its small molecular size, higher water solubility, and low cost. MeJ and urea (Ur) have been studied separately as a foliar application in vines. Describing an en-hance of volatile, phenolic and nitrogen compounds in grapes, although their effect in wines sometimes is less evident. In this trial, three treatments were carried out as foliar application: Control, MeJ and MeJ+Ur, during two growing seasons (2019 and 2020) in Tempranillo vineyard. The analysis of phenolic and nitrogen compounds were carried out by HPLC-DAD [1, 2]. Volatile compounds were determined by SPME-GC-MS [3]. The effect of foliar treatments was season dependent. In 2019, MeJ and MeJ+Ur wines were characterized by a higher content of total acylated anthocyanins, but a lower content of total esters, alcohols and acids than control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in 2020, MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control. Overall, the synergic effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.

 

1. González-Lázaro M., Sáenz de Urturi I., Murillo-Peña R., Marín-San Román S., Pérez-Álvarez E.P., Rubio-Bretón P., Garde-Cerdán T. (2022) Effect of methyl jasmonate and methyl jasmonate plus urea foliar applications on wine phenolic, aromatic and nitrogen composition. Beverages, 8, art. no. 52. DOI: 10.3390/beverages8030052
2. Pérez-Álvarez E.P., Rubio-Bretón P., Intrigliolo D.S., Parra-Torrejón B., Ramírez-Rodríguez G.B., Delgado-López J.M., Garde-Cerdán T. (2022) Year, watering regime and foliar methyl jasmonate doped nanoparticles treatments: Effects on must ni-trogen compounds in Monastrell grapes. Scientia Horticulturae, 297, art. no. 110944. DOI: 10.1016/j.scienta.2022.110944
3. Garde-Cerdán T., Rubio-Bretón P., Marín-San Román S., Sáenz de Urturi I., Pérez-Álvarez E.P. (2021) Pre-fermentative maceration with SO₂ enhanced the must aromatic composition. Food Chemistry, 345, art. no. 128870. DOI: 10.1016/j.food-chem.2020.128870

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Miriam González-Lázaro, Itziar Sáenz de Urturi, Rebeca Murillo-Peña, Sandra Marín-San Román, Lesly Torres-Díaz, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán

Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (ICVV; CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, km. 6, 26007 Logroño, Spain

Contact the author*

Keywords

elicitor, nitrogen fertilizer, quality, Vitis vinifera

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.