terclim by ICS banner
IVES 9 IVES Conference Series 9 FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Abstract

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet. Finally, nitrogen compounds affect the development of alcoholic fermentation and the formation of flavour metabolites. Different approaches have been studied to improve the wine quality. Foliar application of elicitors and nitrogen compounds to vineyard has been studied to palliate the effects of climate change in grape composition, and therefore, to enhance grape and wine quality. Methyl jasmonate (MeJ) is an elicitor able to trigger a response of defense in plants, that induces the production of secondary metabolites. Urea is a nitrogen fertilizer widespread employed due to its small molecular size, higher water solubility, and low cost. MeJ and urea (Ur) have been studied separately as a foliar application in vines. Describing an en-hance of volatile, phenolic and nitrogen compounds in grapes, although their effect in wines sometimes is less evident. In this trial, three treatments were carried out as foliar application: Control, MeJ and MeJ+Ur, during two growing seasons (2019 and 2020) in Tempranillo vineyard. The analysis of phenolic and nitrogen compounds were carried out by HPLC-DAD [1, 2]. Volatile compounds were determined by SPME-GC-MS [3]. The effect of foliar treatments was season dependent. In 2019, MeJ and MeJ+Ur wines were characterized by a higher content of total acylated anthocyanins, but a lower content of total esters, alcohols and acids than control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in 2020, MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control. Overall, the synergic effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.

 

1. González-Lázaro M., Sáenz de Urturi I., Murillo-Peña R., Marín-San Román S., Pérez-Álvarez E.P., Rubio-Bretón P., Garde-Cerdán T. (2022) Effect of methyl jasmonate and methyl jasmonate plus urea foliar applications on wine phenolic, aromatic and nitrogen composition. Beverages, 8, art. no. 52. DOI: 10.3390/beverages8030052
2. Pérez-Álvarez E.P., Rubio-Bretón P., Intrigliolo D.S., Parra-Torrejón B., Ramírez-Rodríguez G.B., Delgado-López J.M., Garde-Cerdán T. (2022) Year, watering regime and foliar methyl jasmonate doped nanoparticles treatments: Effects on must ni-trogen compounds in Monastrell grapes. Scientia Horticulturae, 297, art. no. 110944. DOI: 10.1016/j.scienta.2022.110944
3. Garde-Cerdán T., Rubio-Bretón P., Marín-San Román S., Sáenz de Urturi I., Pérez-Álvarez E.P. (2021) Pre-fermentative maceration with SO₂ enhanced the must aromatic composition. Food Chemistry, 345, art. no. 128870. DOI: 10.1016/j.food-chem.2020.128870

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Miriam González-Lázaro, Itziar Sáenz de Urturi, Rebeca Murillo-Peña, Sandra Marín-San Román, Lesly Torres-Díaz, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán

Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (ICVV; CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, km. 6, 26007 Logroño, Spain

Contact the author*

Keywords

elicitor, nitrogen fertilizer, quality, Vitis vinifera

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.