terclim by ICS banner
IVES 9 IVES Conference Series 9 FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Abstract

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet. Finally, nitrogen compounds affect the development of alcoholic fermentation and the formation of flavour metabolites. Different approaches have been studied to improve the wine quality. Foliar application of elicitors and nitrogen compounds to vineyard has been studied to palliate the effects of climate change in grape composition, and therefore, to enhance grape and wine quality. Methyl jasmonate (MeJ) is an elicitor able to trigger a response of defense in plants, that induces the production of secondary metabolites. Urea is a nitrogen fertilizer widespread employed due to its small molecular size, higher water solubility, and low cost. MeJ and urea (Ur) have been studied separately as a foliar application in vines. Describing an en-hance of volatile, phenolic and nitrogen compounds in grapes, although their effect in wines sometimes is less evident. In this trial, three treatments were carried out as foliar application: Control, MeJ and MeJ+Ur, during two growing seasons (2019 and 2020) in Tempranillo vineyard. The analysis of phenolic and nitrogen compounds were carried out by HPLC-DAD [1, 2]. Volatile compounds were determined by SPME-GC-MS [3]. The effect of foliar treatments was season dependent. In 2019, MeJ and MeJ+Ur wines were characterized by a higher content of total acylated anthocyanins, but a lower content of total esters, alcohols and acids than control wines. MeJ+Ur wines presented a higher total amino acids content than control and MeJ wines. However, in 2020, MeJ+Ur treatment increased the total content of flavonols, flavanols, hydroxycinnamic acids, stilbenes and total amino acids when compared with control. MeJ wines presented a low content of esters and acids, whereas MeJ+Ur did not show differences with control. Overall, the synergic effect of MeJ+Ur foliar treatment was greater than the effect of MeJ application in order to improve the wine chemical composition.

 

1. González-Lázaro M., Sáenz de Urturi I., Murillo-Peña R., Marín-San Román S., Pérez-Álvarez E.P., Rubio-Bretón P., Garde-Cerdán T. (2022) Effect of methyl jasmonate and methyl jasmonate plus urea foliar applications on wine phenolic, aromatic and nitrogen composition. Beverages, 8, art. no. 52. DOI: 10.3390/beverages8030052
2. Pérez-Álvarez E.P., Rubio-Bretón P., Intrigliolo D.S., Parra-Torrejón B., Ramírez-Rodríguez G.B., Delgado-López J.M., Garde-Cerdán T. (2022) Year, watering regime and foliar methyl jasmonate doped nanoparticles treatments: Effects on must ni-trogen compounds in Monastrell grapes. Scientia Horticulturae, 297, art. no. 110944. DOI: 10.1016/j.scienta.2022.110944
3. Garde-Cerdán T., Rubio-Bretón P., Marín-San Román S., Sáenz de Urturi I., Pérez-Álvarez E.P. (2021) Pre-fermentative maceration with SO₂ enhanced the must aromatic composition. Food Chemistry, 345, art. no. 128870. DOI: 10.1016/j.food-chem.2020.128870

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Miriam González-Lázaro, Itziar Sáenz de Urturi, Rebeca Murillo-Peña, Sandra Marín-San Román, Lesly Torres-Díaz, Eva P. Pérez-Álvarez, Teresa Garde-Cerdán

Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (ICVV; CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, km. 6, 26007 Logroño, Spain

Contact the author*

Keywords

elicitor, nitrogen fertilizer, quality, Vitis vinifera

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].