terclim by ICS banner
IVES 9 IVES Conference Series 9 THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Abstract

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fungicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms. In the present work, Colombard and Gros Manseng grape juices were fermented under different copper levels (from 0.2 to 3.88 mg/L) to mimic the consequences of organic practices on grape and must. The consumption of thiol precursors and the release of varietal thiols (both free and oxidised forms of 3SH and 3SHA) were monitored by LC-MS/MS according to previously published methods [3, 4]. It was found that the highest copper content (3.6 and 3.88 mg/L for Colombard and Gros Manseng, respectively) significantly increased yeast consumption of precursors (by 9.0 and 7.6% for Colombard and Gros Manseng, respectively). Surprisingly, this higher consumption of precursors was not associated to higher thiol concentrations. Indeed, for both varieties, the content of free thiols in the wine decreased significantly (by 84 and 47% for Colombard and Gros Manseng, respectively) with the increase of copper in the starting must, as already described in the literature [1, 2]. However, the sum “reduced+oxidized” forms of 3SH produced during fermentation was constant for the Colombard must regardless of the copper conditions, which means that the effect of copper was only oxidative for this variety. In Gros Manseng, on the other hand, the sum “reduced+oxidized” forms of 3SH increased with the copper content, up to 90%. This last result suggests that copper probably modifies the regulation of the production pathways of varietal thiols and has also a key role of oxidation. These results complement our knowledge on the effect of copper during thiol-oriented fermentation and the importance of considering both “reduced+oxidized” forms to distinguish chemical from biological effects.

 

1. Darriet, P., et al., Effects of copper fungicide spraying on volatile thiols of the varietal aroma of Sauvignon blanc, Cabernet Sauvignon and Merlot wines. VITIS-GEILWEILERHOF-, 2001. 40(2): p. 93-100.
2. Hatzidimitriou, E., et al., Incidence d’une protection viticole anticryptogamique utilisant une formulation cuprique sur le niveau de maturité des raisins et l’arôme variétal des vins de Sauvignon:(Bilan de trois années d’expérimentation). Journal International des Sciences de la Vigne et du Vin, 1996. 30(3): p. 133-150.
3. Roland, A., et al., Innovative analysis of 3-mercaptohexan-1-ol, 3-mercaptohexylacetate and their corresponding disulfides in wine by Stable Isotope Dilution Assay and nano-liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2016. 1468: p. 154-163.
4. Bonnaffoux, H., et al., First identification and quantification of S-3-(hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable isotope dilution assay. Food Chemistry, 2017. 237: p. 877-886

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

G. Dournes1, T. Dufourcq², L. Suc1, J.-R. Mouret1 and A. Roland1*

1. SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
2. Institut Français de la Vigne et du Vin, Pôle Sud-Ouest, Caussens, France

Contact the author*

Keywords

3-sulfanylhexan-1-ol, copper, alcoholic fermentation, yeast

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.