terclim by ICS banner
IVES 9 IVES Conference Series 9 THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Abstract

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fungicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms. In the present work, Colombard and Gros Manseng grape juices were fermented under different copper levels (from 0.2 to 3.88 mg/L) to mimic the consequences of organic practices on grape and must. The consumption of thiol precursors and the release of varietal thiols (both free and oxidised forms of 3SH and 3SHA) were monitored by LC-MS/MS according to previously published methods [3, 4]. It was found that the highest copper content (3.6 and 3.88 mg/L for Colombard and Gros Manseng, respectively) significantly increased yeast consumption of precursors (by 9.0 and 7.6% for Colombard and Gros Manseng, respectively). Surprisingly, this higher consumption of precursors was not associated to higher thiol concentrations. Indeed, for both varieties, the content of free thiols in the wine decreased significantly (by 84 and 47% for Colombard and Gros Manseng, respectively) with the increase of copper in the starting must, as already described in the literature [1, 2]. However, the sum “reduced+oxidized” forms of 3SH produced during fermentation was constant for the Colombard must regardless of the copper conditions, which means that the effect of copper was only oxidative for this variety. In Gros Manseng, on the other hand, the sum “reduced+oxidized” forms of 3SH increased with the copper content, up to 90%. This last result suggests that copper probably modifies the regulation of the production pathways of varietal thiols and has also a key role of oxidation. These results complement our knowledge on the effect of copper during thiol-oriented fermentation and the importance of considering both “reduced+oxidized” forms to distinguish chemical from biological effects.

 

1. Darriet, P., et al., Effects of copper fungicide spraying on volatile thiols of the varietal aroma of Sauvignon blanc, Cabernet Sauvignon and Merlot wines. VITIS-GEILWEILERHOF-, 2001. 40(2): p. 93-100.
2. Hatzidimitriou, E., et al., Incidence d’une protection viticole anticryptogamique utilisant une formulation cuprique sur le niveau de maturité des raisins et l’arôme variétal des vins de Sauvignon:(Bilan de trois années d’expérimentation). Journal International des Sciences de la Vigne et du Vin, 1996. 30(3): p. 133-150.
3. Roland, A., et al., Innovative analysis of 3-mercaptohexan-1-ol, 3-mercaptohexylacetate and their corresponding disulfides in wine by Stable Isotope Dilution Assay and nano-liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2016. 1468: p. 154-163.
4. Bonnaffoux, H., et al., First identification and quantification of S-3-(hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable isotope dilution assay. Food Chemistry, 2017. 237: p. 877-886

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

G. Dournes1, T. Dufourcq², L. Suc1, J.-R. Mouret1 and A. Roland1*

1. SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
2. Institut Français de la Vigne et du Vin, Pôle Sud-Ouest, Caussens, France

Contact the author*

Keywords

3-sulfanylhexan-1-ol, copper, alcoholic fermentation, yeast

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].