terclim by ICS banner
IVES 9 IVES Conference Series 9 THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Abstract

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fungicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms. In the present work, Colombard and Gros Manseng grape juices were fermented under different copper levels (from 0.2 to 3.88 mg/L) to mimic the consequences of organic practices on grape and must. The consumption of thiol precursors and the release of varietal thiols (both free and oxidised forms of 3SH and 3SHA) were monitored by LC-MS/MS according to previously published methods [3, 4]. It was found that the highest copper content (3.6 and 3.88 mg/L for Colombard and Gros Manseng, respectively) significantly increased yeast consumption of precursors (by 9.0 and 7.6% for Colombard and Gros Manseng, respectively). Surprisingly, this higher consumption of precursors was not associated to higher thiol concentrations. Indeed, for both varieties, the content of free thiols in the wine decreased significantly (by 84 and 47% for Colombard and Gros Manseng, respectively) with the increase of copper in the starting must, as already described in the literature [1, 2]. However, the sum “reduced+oxidized” forms of 3SH produced during fermentation was constant for the Colombard must regardless of the copper conditions, which means that the effect of copper was only oxidative for this variety. In Gros Manseng, on the other hand, the sum “reduced+oxidized” forms of 3SH increased with the copper content, up to 90%. This last result suggests that copper probably modifies the regulation of the production pathways of varietal thiols and has also a key role of oxidation. These results complement our knowledge on the effect of copper during thiol-oriented fermentation and the importance of considering both “reduced+oxidized” forms to distinguish chemical from biological effects.

 

1. Darriet, P., et al., Effects of copper fungicide spraying on volatile thiols of the varietal aroma of Sauvignon blanc, Cabernet Sauvignon and Merlot wines. VITIS-GEILWEILERHOF-, 2001. 40(2): p. 93-100.
2. Hatzidimitriou, E., et al., Incidence d’une protection viticole anticryptogamique utilisant une formulation cuprique sur le niveau de maturité des raisins et l’arôme variétal des vins de Sauvignon:(Bilan de trois années d’expérimentation). Journal International des Sciences de la Vigne et du Vin, 1996. 30(3): p. 133-150.
3. Roland, A., et al., Innovative analysis of 3-mercaptohexan-1-ol, 3-mercaptohexylacetate and their corresponding disulfides in wine by Stable Isotope Dilution Assay and nano-liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2016. 1468: p. 154-163.
4. Bonnaffoux, H., et al., First identification and quantification of S-3-(hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable isotope dilution assay. Food Chemistry, 2017. 237: p. 877-886

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

G. Dournes1, T. Dufourcq², L. Suc1, J.-R. Mouret1 and A. Roland1*

1. SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
2. Institut Français de la Vigne et du Vin, Pôle Sud-Ouest, Caussens, France

Contact the author*

Keywords

3-sulfanylhexan-1-ol, copper, alcoholic fermentation, yeast

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.