terclim by ICS banner
IVES 9 IVES Conference Series 9 THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

Abstract

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines. When the pre-fermentative grape juice was spiked with glyphosate at 1000 µg L-1, the concentrations of 21 of these were found to have decreased significantly in the finished wines. This study has shown for the first time that the presence of glyphosate during alcoholic fermentation by yeast influences the resulting wine metabolite profile.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jin Wang1, Emma Sherman2, Rebecca C. Deed1,3, Farhana Pinu2, Bruno Fedrizzi1

1. School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand
2. The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
3. School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland, New Zealand

Contact the author*

Keywords

Glyphosate, Viticultural Management, Wine Metabolites, Fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.