terclim by ICS banner
IVES 9 IVES Conference Series 9 WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Abstract

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits. Hence it is important to better understand the effect of potential influential factors on the production of these compounds as well as on their precursors in berries. This communication deals with the study of the impact of various terroir components among maturity, vine rootstocks, water and nitrogen status that can influence grape and corresponding wine composition. All experiments used Ugni blanc grapes and were conducted in commercial vineyards in the Cognac region as well as in the GreffAdapt plot (13 rootstocks selected) [2]. Fermentations were performed at laboratory scale in triplicate similar to Cognac base wine elaboration under harvest-like conditions and standardized conditions, where sugars and YAN were all corrected to the same values [3]. Berry composition at harvest, including detailed amino acid profile, and wine fermentative aromas, such as higher alcohols and esters, were determined. All the parameters tested here could be ranked from the most influential to the least on ester concentrations. Under harvest-like conditions, nitrogen status was found to be the most influential followed by maturity level and finally water status, which was the least impactful parameter despite a very warm and dry 2022 grape-growing season. Higher alcohol acetates were about twice higher in the high nitrogen-status vines (+ 30 mg/L of YAN) compared to the control. Under standardized conditions, maturity was found the most impactful although the initial differences in must sugars and nitrogenous compounds were smoothed, and nitrogen status was the least. Indeed, fatty acid ethyl esters differed considerably depending on maturity and their concentrations were the lowest when grapes were picked around 13-15 °Brix compared to the other two more advanced maturities. These findings highlight the importance of maturity as a key parameter for growers to take into consideration for Cognac production.

 

1. Guittin, C., Maçna, F., Sanchez, I., Poitou, X., Sablayrolles, J.-M., Mouret, J.-R., & Farines, V. (2021). Impact of high lipid contents on the production of fermentative aromas during white wine fermentation. Applied Microbiology and Biotechnology, 1-15.
2. Marguerit, E.; Lagalle, L.; Lafargue, M.; Tandonnet, J.-P.; Goutouly, J.-P.; Beccavin, I.; Roques, M.; Audeguin, L.; Ollat, N. Gref-fAdapt: A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21st Inter-national Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208.
3. Trujillo, M., Bely, M., Albertin, W., Masneuf-Pomarède, I., Colonna-Ceccaldi, B., Marullo, P., & Barbe, J.-C. (2022). Impact of Grape Maturity on Ester Composition and Sensory Properties of Merlot and Tempranillo Wines. Journal of Agricultural and Food Chemistry, 70(37), 11520-11530.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julia GOUOT1,2,3*, Mathilde BOISSEAU3, Xavier POITOU3, Nicolas LE MENN1,2, Laura FARRIS1,2, Marine MOREL4, Elisa MARGUE-RIT4 & Jean-Christophe BARBE1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. R&D Department, JAS Hennessy & Co, Cognac, France
4. EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Aroma compounds, Grape composition, Base wine for Cognac distillation, Ugni blanc

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.