terclim by ICS banner
IVES 9 IVES Conference Series 9 WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Abstract

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits. Hence it is important to better understand the effect of potential influential factors on the production of these compounds as well as on their precursors in berries. This communication deals with the study of the impact of various terroir components among maturity, vine rootstocks, water and nitrogen status that can influence grape and corresponding wine composition. All experiments used Ugni blanc grapes and were conducted in commercial vineyards in the Cognac region as well as in the GreffAdapt plot (13 rootstocks selected) [2]. Fermentations were performed at laboratory scale in triplicate similar to Cognac base wine elaboration under harvest-like conditions and standardized conditions, where sugars and YAN were all corrected to the same values [3]. Berry composition at harvest, including detailed amino acid profile, and wine fermentative aromas, such as higher alcohols and esters, were determined. All the parameters tested here could be ranked from the most influential to the least on ester concentrations. Under harvest-like conditions, nitrogen status was found to be the most influential followed by maturity level and finally water status, which was the least impactful parameter despite a very warm and dry 2022 grape-growing season. Higher alcohol acetates were about twice higher in the high nitrogen-status vines (+ 30 mg/L of YAN) compared to the control. Under standardized conditions, maturity was found the most impactful although the initial differences in must sugars and nitrogenous compounds were smoothed, and nitrogen status was the least. Indeed, fatty acid ethyl esters differed considerably depending on maturity and their concentrations were the lowest when grapes were picked around 13-15 °Brix compared to the other two more advanced maturities. These findings highlight the importance of maturity as a key parameter for growers to take into consideration for Cognac production.

 

1. Guittin, C., Maçna, F., Sanchez, I., Poitou, X., Sablayrolles, J.-M., Mouret, J.-R., & Farines, V. (2021). Impact of high lipid contents on the production of fermentative aromas during white wine fermentation. Applied Microbiology and Biotechnology, 1-15.
2. Marguerit, E.; Lagalle, L.; Lafargue, M.; Tandonnet, J.-P.; Goutouly, J.-P.; Beccavin, I.; Roques, M.; Audeguin, L.; Ollat, N. Gref-fAdapt: A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21st Inter-national Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208.
3. Trujillo, M., Bely, M., Albertin, W., Masneuf-Pomarède, I., Colonna-Ceccaldi, B., Marullo, P., & Barbe, J.-C. (2022). Impact of Grape Maturity on Ester Composition and Sensory Properties of Merlot and Tempranillo Wines. Journal of Agricultural and Food Chemistry, 70(37), 11520-11530.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julia GOUOT1,2,3*, Mathilde BOISSEAU3, Xavier POITOU3, Nicolas LE MENN1,2, Laura FARRIS1,2, Marine MOREL4, Elisa MARGUE-RIT4 & Jean-Christophe BARBE1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. R&D Department, JAS Hennessy & Co, Cognac, France
4. EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Aroma compounds, Grape composition, Base wine for Cognac distillation, Ugni blanc

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.