terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

Abstract

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.

Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined. A trained panel evaluated the wines using sensory descriptive analysis, rating a total of 13 aroma attributes.

According to the quantitative data, a complex aroma profile rich in higher alcohols, ethyl esters, acetate esters and fatty acids, with a contribution of terpenes and volatile phenols was recorded. Statistical data analysis techniques, ANOVA and Principal Component Analysis, showed the structure of the experimental data and the significant differences for each compound in the different wines. PDO Amynteon wines presented higher concentrations in 1-hexanol and higher intensity of green bell pepper attribute, while PDO Naoussa wines were higher in ethyl octanoate, ethyl 2-methylbutyrate and eugenol, with higher scores in berry fruit and spices attributes. Terroir and meso-climate characteristics correlated well with the data obtained and helped identify how typical aromas could be an expression of terroir.

This study provides an approach to the chemo-sensory fingerprinting of Xinomavro PDO wines. It will be further used to advance the understanding of how impact aroma compounds and sensory characteristics shape terroir expression and how this could be manipulated by viticultural and winemaking practices, under current and future climatic conditions.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Elli Goulioti¹, David Jeffery², Despina Lola¹, Dimitris Miliordos¹, Yorgos Kotseridis¹

1. Laboratory of Enology and Alcoholic Drinks, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece
2. School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5064, Australia

Contact the author*

Keywords

GC-MS, sensory analysis, terroir, typicity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.