terclim by ICS banner
IVES 9 IVES Conference Series 9 DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Abstract

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed. Furthermore, lignin is contained in the outer envelope of the seeds [2] and would constitute a mesh that affects the extractability of tannins and therefore the quality of the wine obtained following the winemaking process [3], since these are mainly responsible for the astringency and bitterness in the wine. In order to provide initial answers on the establishment of lignin in the seed, as well as on the quantity and type of lignin found in the seed, a preliminary two-stage study was conducted.

In a first stage, the lignin biosynthesis pathway was studied using qPCR approach with a focus on key genes of the lignin pathway (PAL, 2 isoforms of COMT, CCOAMT, F5H and 2 isoforms of CAD). The analysis of level of transcripts show a differential regulation and timing of transcripts accumulation depending of the stage of maturity and the vintage studied.

In a second step, it was undertaken to identify and quantify the different lignin monomers present in the grapeseed. For this purpose, an extraction of lignins was carried out with an ethanol:toluene, ethanol, water sequence on seed powder. In order to determine the lignin content after extraction, an acetyl bromide procedure was performed as well as a thioacydolysis protocol to cleave the β-O-4 bonds of the lignin polymer and release the different lignin monomers G from guaiacyl, S from syringyl and H from p-hydroxyphenyl. Their identification and quantification was undertaken by HPLC-MS.

This first work on lignin determination in grapeseed give a solid baseline to go further in the comprehensive way to transfer of oenological molecules from grapeseed to must and wine almost in the context of climate change.

 

1. Cadot, Yves, et al. « Anatomical, Histological, and Histochemical Changes in Grape Seeds from Vitis Vinifera L. Cv Cabernet Franc during Fruit Development ». Journal of Agricultural and Food Chemistry, vol. 54, no 24, novembre 2006, p. 9206 15
2. Marles, MA Susan, et Margaret Y. Gruber. « Histochemical Characterisation of Unextractable Seed Coat Pigments and Quantification of Extractable Lignin in the Brassicaceae ». Journal of the Science of Food and Agriculture, vol. 84, no 3, février 2004, p. 251 62.
3. Lewis, Norman G. « A 20th Century Roller Coaster Ride: A Short Account of Lignification ». Current Opinion in Plant Biology, vol. 2, no 2, avril 1999, p. 153 62.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Dorianne Ribet ¹, Clément Miramont ², Ghislaine Hilbert-Masson ³, Michael Jourdes¹, Amélie Rabot ¹*

1. University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV, F- 33140 Villenave d’Ornon, France
2. USC 1422 GRAPPE, INRAE, Ecole Supérieure d’Agricultures, SFR 4207, QUASAV, 55 rue Rabelais, 49100 Angers, France
3. UMR 1287, EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France 

Contact the author*

Keywords

Grapeseed, maturation, biochemistry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.