terclim by ICS banner
IVES 9 IVES Conference Series 9 DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Abstract

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed. Furthermore, lignin is contained in the outer envelope of the seeds [2] and would constitute a mesh that affects the extractability of tannins and therefore the quality of the wine obtained following the winemaking process [3], since these are mainly responsible for the astringency and bitterness in the wine. In order to provide initial answers on the establishment of lignin in the seed, as well as on the quantity and type of lignin found in the seed, a preliminary two-stage study was conducted.

In a first stage, the lignin biosynthesis pathway was studied using qPCR approach with a focus on key genes of the lignin pathway (PAL, 2 isoforms of COMT, CCOAMT, F5H and 2 isoforms of CAD). The analysis of level of transcripts show a differential regulation and timing of transcripts accumulation depending of the stage of maturity and the vintage studied.

In a second step, it was undertaken to identify and quantify the different lignin monomers present in the grapeseed. For this purpose, an extraction of lignins was carried out with an ethanol:toluene, ethanol, water sequence on seed powder. In order to determine the lignin content after extraction, an acetyl bromide procedure was performed as well as a thioacydolysis protocol to cleave the β-O-4 bonds of the lignin polymer and release the different lignin monomers G from guaiacyl, S from syringyl and H from p-hydroxyphenyl. Their identification and quantification was undertaken by HPLC-MS.

This first work on lignin determination in grapeseed give a solid baseline to go further in the comprehensive way to transfer of oenological molecules from grapeseed to must and wine almost in the context of climate change.

 

1. Cadot, Yves, et al. « Anatomical, Histological, and Histochemical Changes in Grape Seeds from Vitis Vinifera L. Cv Cabernet Franc during Fruit Development ». Journal of Agricultural and Food Chemistry, vol. 54, no 24, novembre 2006, p. 9206 15
2. Marles, MA Susan, et Margaret Y. Gruber. « Histochemical Characterisation of Unextractable Seed Coat Pigments and Quantification of Extractable Lignin in the Brassicaceae ». Journal of the Science of Food and Agriculture, vol. 84, no 3, février 2004, p. 251 62.
3. Lewis, Norman G. « A 20th Century Roller Coaster Ride: A Short Account of Lignification ». Current Opinion in Plant Biology, vol. 2, no 2, avril 1999, p. 153 62.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Dorianne Ribet ¹, Clément Miramont ², Ghislaine Hilbert-Masson ³, Michael Jourdes¹, Amélie Rabot ¹*

1. University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV, F- 33140 Villenave d’Ornon, France
2. USC 1422 GRAPPE, INRAE, Ecole Supérieure d’Agricultures, SFR 4207, QUASAV, 55 rue Rabelais, 49100 Angers, France
3. UMR 1287, EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France 

Contact the author*

Keywords

Grapeseed, maturation, biochemistry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.