terclim by ICS banner
IVES 9 IVES Conference Series 9 DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Abstract

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed. Furthermore, lignin is contained in the outer envelope of the seeds [2] and would constitute a mesh that affects the extractability of tannins and therefore the quality of the wine obtained following the winemaking process [3], since these are mainly responsible for the astringency and bitterness in the wine. In order to provide initial answers on the establishment of lignin in the seed, as well as on the quantity and type of lignin found in the seed, a preliminary two-stage study was conducted.

In a first stage, the lignin biosynthesis pathway was studied using qPCR approach with a focus on key genes of the lignin pathway (PAL, 2 isoforms of COMT, CCOAMT, F5H and 2 isoforms of CAD). The analysis of level of transcripts show a differential regulation and timing of transcripts accumulation depending of the stage of maturity and the vintage studied.

In a second step, it was undertaken to identify and quantify the different lignin monomers present in the grapeseed. For this purpose, an extraction of lignins was carried out with an ethanol:toluene, ethanol, water sequence on seed powder. In order to determine the lignin content after extraction, an acetyl bromide procedure was performed as well as a thioacydolysis protocol to cleave the β-O-4 bonds of the lignin polymer and release the different lignin monomers G from guaiacyl, S from syringyl and H from p-hydroxyphenyl. Their identification and quantification was undertaken by HPLC-MS.

This first work on lignin determination in grapeseed give a solid baseline to go further in the comprehensive way to transfer of oenological molecules from grapeseed to must and wine almost in the context of climate change.

 

1. Cadot, Yves, et al. « Anatomical, Histological, and Histochemical Changes in Grape Seeds from Vitis Vinifera L. Cv Cabernet Franc during Fruit Development ». Journal of Agricultural and Food Chemistry, vol. 54, no 24, novembre 2006, p. 9206 15
2. Marles, MA Susan, et Margaret Y. Gruber. « Histochemical Characterisation of Unextractable Seed Coat Pigments and Quantification of Extractable Lignin in the Brassicaceae ». Journal of the Science of Food and Agriculture, vol. 84, no 3, février 2004, p. 251 62.
3. Lewis, Norman G. « A 20th Century Roller Coaster Ride: A Short Account of Lignification ». Current Opinion in Plant Biology, vol. 2, no 2, avril 1999, p. 153 62.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Dorianne Ribet ¹, Clément Miramont ², Ghislaine Hilbert-Masson ³, Michael Jourdes¹, Amélie Rabot ¹*

1. University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV, F- 33140 Villenave d’Ornon, France
2. USC 1422 GRAPPE, INRAE, Ecole Supérieure d’Agricultures, SFR 4207, QUASAV, 55 rue Rabelais, 49100 Angers, France
3. UMR 1287, EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France 

Contact the author*

Keywords

Grapeseed, maturation, biochemistry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.