terclim by ICS banner
IVES 9 IVES Conference Series 9 DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Abstract

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed. Furthermore, lignin is contained in the outer envelope of the seeds [2] and would constitute a mesh that affects the extractability of tannins and therefore the quality of the wine obtained following the winemaking process [3], since these are mainly responsible for the astringency and bitterness in the wine. In order to provide initial answers on the establishment of lignin in the seed, as well as on the quantity and type of lignin found in the seed, a preliminary two-stage study was conducted.

In a first stage, the lignin biosynthesis pathway was studied using qPCR approach with a focus on key genes of the lignin pathway (PAL, 2 isoforms of COMT, CCOAMT, F5H and 2 isoforms of CAD). The analysis of level of transcripts show a differential regulation and timing of transcripts accumulation depending of the stage of maturity and the vintage studied.

In a second step, it was undertaken to identify and quantify the different lignin monomers present in the grapeseed. For this purpose, an extraction of lignins was carried out with an ethanol:toluene, ethanol, water sequence on seed powder. In order to determine the lignin content after extraction, an acetyl bromide procedure was performed as well as a thioacydolysis protocol to cleave the β-O-4 bonds of the lignin polymer and release the different lignin monomers G from guaiacyl, S from syringyl and H from p-hydroxyphenyl. Their identification and quantification was undertaken by HPLC-MS.

This first work on lignin determination in grapeseed give a solid baseline to go further in the comprehensive way to transfer of oenological molecules from grapeseed to must and wine almost in the context of climate change.

 

1. Cadot, Yves, et al. « Anatomical, Histological, and Histochemical Changes in Grape Seeds from Vitis Vinifera L. Cv Cabernet Franc during Fruit Development ». Journal of Agricultural and Food Chemistry, vol. 54, no 24, novembre 2006, p. 9206 15
2. Marles, MA Susan, et Margaret Y. Gruber. « Histochemical Characterisation of Unextractable Seed Coat Pigments and Quantification of Extractable Lignin in the Brassicaceae ». Journal of the Science of Food and Agriculture, vol. 84, no 3, février 2004, p. 251 62.
3. Lewis, Norman G. « A 20th Century Roller Coaster Ride: A Short Account of Lignification ». Current Opinion in Plant Biology, vol. 2, no 2, avril 1999, p. 153 62.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Dorianne Ribet ¹, Clément Miramont ², Ghislaine Hilbert-Masson ³, Michael Jourdes¹, Amélie Rabot ¹*

1. University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV, F- 33140 Villenave d’Ornon, France
2. USC 1422 GRAPPE, INRAE, Ecole Supérieure d’Agricultures, SFR 4207, QUASAV, 55 rue Rabelais, 49100 Angers, France
3. UMR 1287, EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France 

Contact the author*

Keywords

Grapeseed, maturation, biochemistry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.