terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Abstract

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.

Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

The objective of our study is to build a scientific experiment to validate this knowledge and opinion by providing understanding of the biological behavior of the plant and the grape, and, finally, of the differences observed on the wine.

Our trial aims at evaluating the effects of a biodynamic management on the mechanisms of grape ripening. It is conducted on 8 parcels of the Lafite Rothschild vineyard, 4 of which have been receiving biodynamic preparations since 2017 and 4 not.

The parameters of technological ( sugars, TA, malic acid, tartaric acid, pH), phenolic (glories method), and textural maturity (Penetrometry, Aw) of the berries from veraison onwards were monitored in the 8 plots. The content of polysaccharides and pectin was analyzed during the ripening period on the grape skins. Once harvested, the berries were tasted by a trained panel.

Depending on the parameters, differences were observed and seemed to confirm the empirical vision of biodynamic practitioners.

Further analyses will have to be carried out to confirm these observations and evaluate the mechanisms involved.

 

1. Botelho, Renato Vasconcelos, Roberta Roberti, Paola Tessarin, José María Garcia-Mina, et Adamo Domenico Rombolà. « Physiological Responses of Grapevines to Biodynamic Management ». Renewable Agriculture and Food Systems 31, no 5 (octobre 2016): 402-13. https://doi.org/10.1017/S1742170515000320.
2. Döring, Johanna, Matthias Frisch, Susanne Tittmann, Manfred Stoll, et Randolf Kauer. « Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management ». Édité par S. Kaan Kurtural. PLOS ONE 10, no 10 (8 octobre 2015): e0138445. https://doi.org/10.1371/journal.pone.0138445.
3. Guzzon, R., S. Gugole, R. Zanzotti, M. Malacarne, R. Larcher, C. von Wallbrunn, et E. Mescalchin. « Evaluation of the Oenological Suitability of Grapes Grown Using Biodynamic Agriculture: The Case of a Bad Vintage ». Journal of Applied Microbiology 120, no 2 (février 2016): 355-65. https://doi.org/10.1111/jam.13004.
4. Meissner, Georg, Miriam Edith Athmann, Jürgen Fritz, Randolf Kauer, Manfred Stoll, et Hans Reiner Schultz. « Conversion to Organic and Biodynamic Viticultural Practices: Impact on Soil, Grapevine Development and Grape Quality ». OENO One 53, no 4 (18 octobre 2019). https://doi.org/10.20870/oeno-one.2019.53.4.2470.
5. Picone, Gianfranco, Alessia Trimigno, Paola Tessarin, Silvia Donnini, Adamo Domenico Rombolà, et Francesco Capozzi. « 1 H NMR Foodomics Reveals That the Biodynamic and the Organic Cultivation Managements Produce Different Grape Berries ( Vitis Vinifera L. Cv. Sangiovese) ». Food Chemistry 213 (décembre 2016): 187-95. https://doi.org/10.1016/j.foodchem.2016.06.077

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Manuela Brando¹, Eric Kohler², Yasuhiro Ishizaki¹, Soizic Lacampagne ¹ and Laurence Geny-Denis ¹

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. Château Lafite Rothschild, 33250 Pauillac, France

Contact the author*

Keywords

Biodynamics, viticulture, grapes, maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.