terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Abstract

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.

Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

The objective of our study is to build a scientific experiment to validate this knowledge and opinion by providing understanding of the biological behavior of the plant and the grape, and, finally, of the differences observed on the wine.

Our trial aims at evaluating the effects of a biodynamic management on the mechanisms of grape ripening. It is conducted on 8 parcels of the Lafite Rothschild vineyard, 4 of which have been receiving biodynamic preparations since 2017 and 4 not.

The parameters of technological ( sugars, TA, malic acid, tartaric acid, pH), phenolic (glories method), and textural maturity (Penetrometry, Aw) of the berries from veraison onwards were monitored in the 8 plots. The content of polysaccharides and pectin was analyzed during the ripening period on the grape skins. Once harvested, the berries were tasted by a trained panel.

Depending on the parameters, differences were observed and seemed to confirm the empirical vision of biodynamic practitioners.

Further analyses will have to be carried out to confirm these observations and evaluate the mechanisms involved.

 

1. Botelho, Renato Vasconcelos, Roberta Roberti, Paola Tessarin, José María Garcia-Mina, et Adamo Domenico Rombolà. « Physiological Responses of Grapevines to Biodynamic Management ». Renewable Agriculture and Food Systems 31, no 5 (octobre 2016): 402-13. https://doi.org/10.1017/S1742170515000320.
2. Döring, Johanna, Matthias Frisch, Susanne Tittmann, Manfred Stoll, et Randolf Kauer. « Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management ». Édité par S. Kaan Kurtural. PLOS ONE 10, no 10 (8 octobre 2015): e0138445. https://doi.org/10.1371/journal.pone.0138445.
3. Guzzon, R., S. Gugole, R. Zanzotti, M. Malacarne, R. Larcher, C. von Wallbrunn, et E. Mescalchin. « Evaluation of the Oenological Suitability of Grapes Grown Using Biodynamic Agriculture: The Case of a Bad Vintage ». Journal of Applied Microbiology 120, no 2 (février 2016): 355-65. https://doi.org/10.1111/jam.13004.
4. Meissner, Georg, Miriam Edith Athmann, Jürgen Fritz, Randolf Kauer, Manfred Stoll, et Hans Reiner Schultz. « Conversion to Organic and Biodynamic Viticultural Practices: Impact on Soil, Grapevine Development and Grape Quality ». OENO One 53, no 4 (18 octobre 2019). https://doi.org/10.20870/oeno-one.2019.53.4.2470.
5. Picone, Gianfranco, Alessia Trimigno, Paola Tessarin, Silvia Donnini, Adamo Domenico Rombolà, et Francesco Capozzi. « 1 H NMR Foodomics Reveals That the Biodynamic and the Organic Cultivation Managements Produce Different Grape Berries ( Vitis Vinifera L. Cv. Sangiovese) ». Food Chemistry 213 (décembre 2016): 187-95. https://doi.org/10.1016/j.foodchem.2016.06.077

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Manuela Brando¹, Eric Kohler², Yasuhiro Ishizaki¹, Soizic Lacampagne ¹ and Laurence Geny-Denis ¹

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. Château Lafite Rothschild, 33250 Pauillac, France

Contact the author*

Keywords

Biodynamics, viticulture, grapes, maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.