terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Abstract

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.

Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

The objective of our study is to build a scientific experiment to validate this knowledge and opinion by providing understanding of the biological behavior of the plant and the grape, and, finally, of the differences observed on the wine.

Our trial aims at evaluating the effects of a biodynamic management on the mechanisms of grape ripening. It is conducted on 8 parcels of the Lafite Rothschild vineyard, 4 of which have been receiving biodynamic preparations since 2017 and 4 not.

The parameters of technological ( sugars, TA, malic acid, tartaric acid, pH), phenolic (glories method), and textural maturity (Penetrometry, Aw) of the berries from veraison onwards were monitored in the 8 plots. The content of polysaccharides and pectin was analyzed during the ripening period on the grape skins. Once harvested, the berries were tasted by a trained panel.

Depending on the parameters, differences were observed and seemed to confirm the empirical vision of biodynamic practitioners.

Further analyses will have to be carried out to confirm these observations and evaluate the mechanisms involved.

 

1. Botelho, Renato Vasconcelos, Roberta Roberti, Paola Tessarin, José María Garcia-Mina, et Adamo Domenico Rombolà. « Physiological Responses of Grapevines to Biodynamic Management ». Renewable Agriculture and Food Systems 31, no 5 (octobre 2016): 402-13. https://doi.org/10.1017/S1742170515000320.
2. Döring, Johanna, Matthias Frisch, Susanne Tittmann, Manfred Stoll, et Randolf Kauer. « Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management ». Édité par S. Kaan Kurtural. PLOS ONE 10, no 10 (8 octobre 2015): e0138445. https://doi.org/10.1371/journal.pone.0138445.
3. Guzzon, R., S. Gugole, R. Zanzotti, M. Malacarne, R. Larcher, C. von Wallbrunn, et E. Mescalchin. « Evaluation of the Oenological Suitability of Grapes Grown Using Biodynamic Agriculture: The Case of a Bad Vintage ». Journal of Applied Microbiology 120, no 2 (février 2016): 355-65. https://doi.org/10.1111/jam.13004.
4. Meissner, Georg, Miriam Edith Athmann, Jürgen Fritz, Randolf Kauer, Manfred Stoll, et Hans Reiner Schultz. « Conversion to Organic and Biodynamic Viticultural Practices: Impact on Soil, Grapevine Development and Grape Quality ». OENO One 53, no 4 (18 octobre 2019). https://doi.org/10.20870/oeno-one.2019.53.4.2470.
5. Picone, Gianfranco, Alessia Trimigno, Paola Tessarin, Silvia Donnini, Adamo Domenico Rombolà, et Francesco Capozzi. « 1 H NMR Foodomics Reveals That the Biodynamic and the Organic Cultivation Managements Produce Different Grape Berries ( Vitis Vinifera L. Cv. Sangiovese) ». Food Chemistry 213 (décembre 2016): 187-95. https://doi.org/10.1016/j.foodchem.2016.06.077

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Manuela Brando¹, Eric Kohler², Yasuhiro Ishizaki¹, Soizic Lacampagne ¹ and Laurence Geny-Denis ¹

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. Château Lafite Rothschild, 33250 Pauillac, France

Contact the author*

Keywords

Biodynamics, viticulture, grapes, maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.