terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

Abstract

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2). However, these wine-growing areas have the potentiality to stay in place if they shift from the “international” varieties to autochthonous varieties, usually better adapted to the local climate of the growing area (3). In the Spanish “Castilla y León” region, an important number of minority Vitis vinifera L varieties have been identified and conserved in a germplasm bank. It is therefore interesting to study their potential to make quality wines. For this purpose, the present study aimed at determining by HPLC-DAD-MSn (4) and HPLC-MS-MRM (5) the anthocyanin, flavonol and flavanol composition of some of them (Mandón de Zamadueñas, Mandón de Arribes, Gajo Arroba, Tinto Jeromo, Bruñal, Merenzao, Estaladiña and Cenicienta) coming from different parts of Castilla y León.

Quantitative differences were observed in the total anthocyanin contents and in the proportions of individual pigments. Malvidin derivatives prevailed over the rest of the anthocyanins in all cases, but in Merenzao and Estaladiña grapes, the proportion of the latter ones were greater than in the other varieties. Varieties also differed in the p-coumaroyl/acetyl derivatives ratio and in the proportion of caffeoyl derivatives. Flavonol total content and profile also changed among varieties, with myricetin and quercetin derivatives being the most abundant ones. Flavanol profile, which has been reported to be less useful for chemotaxonomic purposes than anthocyanin and flavonol profiles, was also different even for varieties coming from the same part of the Castilla y León region, highlighting again the existence of varietal differences in flavonoid composition. The knowledge of the flavonoid composition of these red grape minority varieties will be helpful for enologists to adapt the winemaking process to exploit the potential of each variety and to obtain quality wines from the natural resources of the region.

 

1. Mira de Orduña, R., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int., 43, 1844-1855
2. Jones, G. V., White, M. A., Cooper, O. R., Storchmann, K., 2005. Climate change and global wine quality. Clim. Change, 73, 319–343
3. Wolkovich, E.M., García de Cortázar-Atauri, I., Morales-Castilla, I., Nicholas, K.A., Lacombe, T., 2018. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change, 8, 29-37.
4. Alcalde-Eon, C., García-Estévez, I., Martín-Baz, A., Rivas-Gonzalo, J. C., Escribano-Bailón, M. T., 2014. Anthocyanin and flavonol profiles of Vitis vinifera L. cv Rufete grapes. Biochem. System. Ecol., 53, 76-80.
5. García-Estévez, I., Alcalde-Eon, C., Escribano-Bailón, M.T., 2017. Flavanol quantification of grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to differentiation among clones of Vitis vinifera L. cv. Rufete grapes. J. Agric. Food Chem., 65, 6359-6368

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

María José Quezada¹, Rebeca Ferreras-Charro¹, Alberto Martín-Baz², Ignacio García-Estévez¹, M. Teresa Escribano-Bailón¹, Cristina Alcalde-Eon¹

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, E37007Salamanca, Spain
2. Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, E47071 Valladolid, Spain.

Contact the author*

Keywords

Flavonoid profile, minority grapes, HPLC-DAD-MSn and HPLC-MS-MRM, Chemotaxo-nomic markers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).