terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

Abstract

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2). However, these wine-growing areas have the potentiality to stay in place if they shift from the “international” varieties to autochthonous varieties, usually better adapted to the local climate of the growing area (3). In the Spanish “Castilla y León” region, an important number of minority Vitis vinifera L varieties have been identified and conserved in a germplasm bank. It is therefore interesting to study their potential to make quality wines. For this purpose, the present study aimed at determining by HPLC-DAD-MSn (4) and HPLC-MS-MRM (5) the anthocyanin, flavonol and flavanol composition of some of them (Mandón de Zamadueñas, Mandón de Arribes, Gajo Arroba, Tinto Jeromo, Bruñal, Merenzao, Estaladiña and Cenicienta) coming from different parts of Castilla y León.

Quantitative differences were observed in the total anthocyanin contents and in the proportions of individual pigments. Malvidin derivatives prevailed over the rest of the anthocyanins in all cases, but in Merenzao and Estaladiña grapes, the proportion of the latter ones were greater than in the other varieties. Varieties also differed in the p-coumaroyl/acetyl derivatives ratio and in the proportion of caffeoyl derivatives. Flavonol total content and profile also changed among varieties, with myricetin and quercetin derivatives being the most abundant ones. Flavanol profile, which has been reported to be less useful for chemotaxonomic purposes than anthocyanin and flavonol profiles, was also different even for varieties coming from the same part of the Castilla y León region, highlighting again the existence of varietal differences in flavonoid composition. The knowledge of the flavonoid composition of these red grape minority varieties will be helpful for enologists to adapt the winemaking process to exploit the potential of each variety and to obtain quality wines from the natural resources of the region.

 

1. Mira de Orduña, R., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int., 43, 1844-1855
2. Jones, G. V., White, M. A., Cooper, O. R., Storchmann, K., 2005. Climate change and global wine quality. Clim. Change, 73, 319–343
3. Wolkovich, E.M., García de Cortázar-Atauri, I., Morales-Castilla, I., Nicholas, K.A., Lacombe, T., 2018. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change, 8, 29-37.
4. Alcalde-Eon, C., García-Estévez, I., Martín-Baz, A., Rivas-Gonzalo, J. C., Escribano-Bailón, M. T., 2014. Anthocyanin and flavonol profiles of Vitis vinifera L. cv Rufete grapes. Biochem. System. Ecol., 53, 76-80.
5. García-Estévez, I., Alcalde-Eon, C., Escribano-Bailón, M.T., 2017. Flavanol quantification of grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to differentiation among clones of Vitis vinifera L. cv. Rufete grapes. J. Agric. Food Chem., 65, 6359-6368

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

María José Quezada¹, Rebeca Ferreras-Charro¹, Alberto Martín-Baz², Ignacio García-Estévez¹, M. Teresa Escribano-Bailón¹, Cristina Alcalde-Eon¹

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, E37007Salamanca, Spain
2. Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, E47071 Valladolid, Spain.

Contact the author*

Keywords

Flavonoid profile, minority grapes, HPLC-DAD-MSn and HPLC-MS-MRM, Chemotaxo-nomic markers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.