terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

Abstract

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2). However, these wine-growing areas have the potentiality to stay in place if they shift from the “international” varieties to autochthonous varieties, usually better adapted to the local climate of the growing area (3). In the Spanish “Castilla y León” region, an important number of minority Vitis vinifera L varieties have been identified and conserved in a germplasm bank. It is therefore interesting to study their potential to make quality wines. For this purpose, the present study aimed at determining by HPLC-DAD-MSn (4) and HPLC-MS-MRM (5) the anthocyanin, flavonol and flavanol composition of some of them (Mandón de Zamadueñas, Mandón de Arribes, Gajo Arroba, Tinto Jeromo, Bruñal, Merenzao, Estaladiña and Cenicienta) coming from different parts of Castilla y León.

Quantitative differences were observed in the total anthocyanin contents and in the proportions of individual pigments. Malvidin derivatives prevailed over the rest of the anthocyanins in all cases, but in Merenzao and Estaladiña grapes, the proportion of the latter ones were greater than in the other varieties. Varieties also differed in the p-coumaroyl/acetyl derivatives ratio and in the proportion of caffeoyl derivatives. Flavonol total content and profile also changed among varieties, with myricetin and quercetin derivatives being the most abundant ones. Flavanol profile, which has been reported to be less useful for chemotaxonomic purposes than anthocyanin and flavonol profiles, was also different even for varieties coming from the same part of the Castilla y León region, highlighting again the existence of varietal differences in flavonoid composition. The knowledge of the flavonoid composition of these red grape minority varieties will be helpful for enologists to adapt the winemaking process to exploit the potential of each variety and to obtain quality wines from the natural resources of the region.

 

1. Mira de Orduña, R., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int., 43, 1844-1855
2. Jones, G. V., White, M. A., Cooper, O. R., Storchmann, K., 2005. Climate change and global wine quality. Clim. Change, 73, 319–343
3. Wolkovich, E.M., García de Cortázar-Atauri, I., Morales-Castilla, I., Nicholas, K.A., Lacombe, T., 2018. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change, 8, 29-37.
4. Alcalde-Eon, C., García-Estévez, I., Martín-Baz, A., Rivas-Gonzalo, J. C., Escribano-Bailón, M. T., 2014. Anthocyanin and flavonol profiles of Vitis vinifera L. cv Rufete grapes. Biochem. System. Ecol., 53, 76-80.
5. García-Estévez, I., Alcalde-Eon, C., Escribano-Bailón, M.T., 2017. Flavanol quantification of grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to differentiation among clones of Vitis vinifera L. cv. Rufete grapes. J. Agric. Food Chem., 65, 6359-6368

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

María José Quezada¹, Rebeca Ferreras-Charro¹, Alberto Martín-Baz², Ignacio García-Estévez¹, M. Teresa Escribano-Bailón¹, Cristina Alcalde-Eon¹

1. Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, E37007Salamanca, Spain
2. Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, E47071 Valladolid, Spain.

Contact the author*

Keywords

Flavonoid profile, minority grapes, HPLC-DAD-MSn and HPLC-MS-MRM, Chemotaxo-nomic markers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.