OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Abstract

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects. 

Indeed, our group has recently proved their effects against laccase damage [1]. The goal of this study was to better understand the mechanism of action of oenological tannins on laccase activity induced by Botrytis cinerea. Five oenological tannins were used (gallotannin, ellagitannin, quebracho, grape-skin and grape-seed) and compared with ascorbic acid (AA) and sulfur dioxide (SO2). Oenological tannins, AA and SO2 were added to botrytized must at different doses. After 4 minutes, laccase activity was measured by the syringaldazine method [2] using different concentration of subtract. Enzymatic kinetic constants (Km/Vmax) were determined according to Michaelis-Menten model. Furthermore, B. cinerea (strain 213) was grown in a stimulating liquid medium for laccase production [3]. The molecular weight (MW) and the effect of bentonite and tannins upon laccase were studied by SDS-PAGE. The results confirm that all oenological tannins inhibit laccase activity and that the higher the dose the lower the laccase activity. In this way, gallotannin, grape-seed and skins tannins seem to be the most effective tannins. All the tannins were as effective as AA, even though SO2 was clearly the most effective inhibitor. The laccase produced by B. cinerea had a MW of 95 kDa. After bentonite treatment all wine protein bands disappeared and laccase band decreased slightly although its activity remains stable. The interaction between different oenological tannins and laccase was analyzed by measuring the reduction of the intensity of the laccase band. In general, the reduction of band intensity correlates with the reduction of laccase enzymatic activity. 

It can be concluded therefore that oenological tannins a good candidate to prevent laccase effects, helping to diminish the SO2 dose in grapes infected by B. cinerea. 

[1] Vignault, A.; Pascual, O.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Canals, J.M.; Teissedre, P-L.; Zamora, F. Oeno One, 2019. 
[2] Urbano Cuadrado, M.; Pérez-Juan, P.M.; Luque de Castro, M.; Gomez-Nieto, M.A., Anal Chim Acta, 2005, 553, 99-104. 
[3] Quijada-Morin, N.; Garcia, F.; Lambert, K.; Walker, A.S.; Tiers, L.; Viaud, M.; Sauvage, F-X.; Hirtz, C.; Saucier, C.; Aust J Grape Wine Res, 2018, 24, 241-251.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Fernando Zamora (1), Adeline Vignault (2), Jordi Gombau (1), Michael Jourdes (2), Virginie Moine (3), Joan Miquel Canals (1), Pierre-Louis Teissedre (2)

1) Departament de Bioquímica i Biotecnologia. Facultat d’Enologia. Universitat Rovira i Virgili. C/ Marcel.lí Domingo 1, 43007-Tarragona (Spain)
2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
3) Laffort, 11 rue Aristide berges, 33270 Floirac, France

Contact the author

Keywords

Oenological tannins, Botrytis cinerea laccase, Kinetics, SDS-PAGE 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Mapping grape composition in the field using VIS/SWIR hyperspectral cameras mounted on a UTV

Assessing grape composition is critical in vineyard management. It is required to decide the harvest date and to optimize cultural practices toward the achievement of production goals. The grape composition is variable in time and space, as it is affected by the ripening process and depends on soil and climate conditions.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.