OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Abstract

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects. 

Indeed, our group has recently proved their effects against laccase damage [1]. The goal of this study was to better understand the mechanism of action of oenological tannins on laccase activity induced by Botrytis cinerea. Five oenological tannins were used (gallotannin, ellagitannin, quebracho, grape-skin and grape-seed) and compared with ascorbic acid (AA) and sulfur dioxide (SO2). Oenological tannins, AA and SO2 were added to botrytized must at different doses. After 4 minutes, laccase activity was measured by the syringaldazine method [2] using different concentration of subtract. Enzymatic kinetic constants (Km/Vmax) were determined according to Michaelis-Menten model. Furthermore, B. cinerea (strain 213) was grown in a stimulating liquid medium for laccase production [3]. The molecular weight (MW) and the effect of bentonite and tannins upon laccase were studied by SDS-PAGE. The results confirm that all oenological tannins inhibit laccase activity and that the higher the dose the lower the laccase activity. In this way, gallotannin, grape-seed and skins tannins seem to be the most effective tannins. All the tannins were as effective as AA, even though SO2 was clearly the most effective inhibitor. The laccase produced by B. cinerea had a MW of 95 kDa. After bentonite treatment all wine protein bands disappeared and laccase band decreased slightly although its activity remains stable. The interaction between different oenological tannins and laccase was analyzed by measuring the reduction of the intensity of the laccase band. In general, the reduction of band intensity correlates with the reduction of laccase enzymatic activity. 

It can be concluded therefore that oenological tannins a good candidate to prevent laccase effects, helping to diminish the SO2 dose in grapes infected by B. cinerea. 

[1] Vignault, A.; Pascual, O.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Canals, J.M.; Teissedre, P-L.; Zamora, F. Oeno One, 2019. 
[2] Urbano Cuadrado, M.; Pérez-Juan, P.M.; Luque de Castro, M.; Gomez-Nieto, M.A., Anal Chim Acta, 2005, 553, 99-104. 
[3] Quijada-Morin, N.; Garcia, F.; Lambert, K.; Walker, A.S.; Tiers, L.; Viaud, M.; Sauvage, F-X.; Hirtz, C.; Saucier, C.; Aust J Grape Wine Res, 2018, 24, 241-251.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Fernando Zamora (1), Adeline Vignault (2), Jordi Gombau (1), Michael Jourdes (2), Virginie Moine (3), Joan Miquel Canals (1), Pierre-Louis Teissedre (2)

1) Departament de Bioquímica i Biotecnologia. Facultat d’Enologia. Universitat Rovira i Virgili. C/ Marcel.lí Domingo 1, 43007-Tarragona (Spain)
2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
3) Laffort, 11 rue Aristide berges, 33270 Floirac, France

Contact the author

Keywords

Oenological tannins, Botrytis cinerea laccase, Kinetics, SDS-PAGE 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Oenological potential of wines and agronomical characterisation of grapes from five white resistant Italian varieties at Serra Gaúcha, Southern Brazil

Rio grande do sul is the main grape producing state in Brazil, with the largest wine-growing area, responsible by 90% of the national production of wines and grape juices. Serra Gaúcha is the main vitivinicultural region, where around 15% of the area is destined to produce wines from vitis vinifera L. grapes. This region presents high rainfall during the grape maturation cycle, a factor that leads to great risk of attacks by fungal pathogens. the use of resistant varieties can reduce the cost and quantity of spraying, improving wine quality, focusing on a sustainable vitiviniculture.

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.