OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Abstract

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects. 

Indeed, our group has recently proved their effects against laccase damage [1]. The goal of this study was to better understand the mechanism of action of oenological tannins on laccase activity induced by Botrytis cinerea. Five oenological tannins were used (gallotannin, ellagitannin, quebracho, grape-skin and grape-seed) and compared with ascorbic acid (AA) and sulfur dioxide (SO2). Oenological tannins, AA and SO2 were added to botrytized must at different doses. After 4 minutes, laccase activity was measured by the syringaldazine method [2] using different concentration of subtract. Enzymatic kinetic constants (Km/Vmax) were determined according to Michaelis-Menten model. Furthermore, B. cinerea (strain 213) was grown in a stimulating liquid medium for laccase production [3]. The molecular weight (MW) and the effect of bentonite and tannins upon laccase were studied by SDS-PAGE. The results confirm that all oenological tannins inhibit laccase activity and that the higher the dose the lower the laccase activity. In this way, gallotannin, grape-seed and skins tannins seem to be the most effective tannins. All the tannins were as effective as AA, even though SO2 was clearly the most effective inhibitor. The laccase produced by B. cinerea had a MW of 95 kDa. After bentonite treatment all wine protein bands disappeared and laccase band decreased slightly although its activity remains stable. The interaction between different oenological tannins and laccase was analyzed by measuring the reduction of the intensity of the laccase band. In general, the reduction of band intensity correlates with the reduction of laccase enzymatic activity. 

It can be concluded therefore that oenological tannins a good candidate to prevent laccase effects, helping to diminish the SO2 dose in grapes infected by B. cinerea. 

[1] Vignault, A.; Pascual, O.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Canals, J.M.; Teissedre, P-L.; Zamora, F. Oeno One, 2019. 
[2] Urbano Cuadrado, M.; Pérez-Juan, P.M.; Luque de Castro, M.; Gomez-Nieto, M.A., Anal Chim Acta, 2005, 553, 99-104. 
[3] Quijada-Morin, N.; Garcia, F.; Lambert, K.; Walker, A.S.; Tiers, L.; Viaud, M.; Sauvage, F-X.; Hirtz, C.; Saucier, C.; Aust J Grape Wine Res, 2018, 24, 241-251.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Fernando Zamora (1), Adeline Vignault (2), Jordi Gombau (1), Michael Jourdes (2), Virginie Moine (3), Joan Miquel Canals (1), Pierre-Louis Teissedre (2)

1) Departament de Bioquímica i Biotecnologia. Facultat d’Enologia. Universitat Rovira i Virgili. C/ Marcel.lí Domingo 1, 43007-Tarragona (Spain)
2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
3) Laffort, 11 rue Aristide berges, 33270 Floirac, France

Contact the author

Keywords

Oenological tannins, Botrytis cinerea laccase, Kinetics, SDS-PAGE 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Pharmacological basis of the J-shaped curve in biological effects of wine

The classical pharmacological model assumes that the effect of a drug is proportional to the fraction of receptors occupied by the drug. In the simplest circumstances, the relationship between dose of a drug and response, when plotted on a logarithmic scale for drug concentration, is described by a sigmoidal curve. It presumes the existence of a threshold dose, below which no biological effect appears, and a maximal response in the form of a plateau, when a further increase in the dose of drug has no effect.

What drives Indications of Geographical Origin protection and governance mechanisms in the U.S. and European contexts? A contribution of the social sciences

There are fundamentally two different ways in which indications of geographical origin (igos) can be protected. The us approach favors the pre-existing trademark system through collective marks (cms), while the eu approach favors a maximalist approach via a sui generis system which promotes appellations of origin (aos). A consensus however emerges regarding the fundamental protection of origin against misleading, confusing and dilutive uses. Previous literature discusses these competing igo logics from historical, legal and international trade perspectives. In this paper, we depart from the field of social sciences, in particular from recent advancements in the well-established literature on proximities, in order to provide a reflection on the different logics underpinning the aos and cms systems.

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).