OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Abstract

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects. 

Indeed, our group has recently proved their effects against laccase damage [1]. The goal of this study was to better understand the mechanism of action of oenological tannins on laccase activity induced by Botrytis cinerea. Five oenological tannins were used (gallotannin, ellagitannin, quebracho, grape-skin and grape-seed) and compared with ascorbic acid (AA) and sulfur dioxide (SO2). Oenological tannins, AA and SO2 were added to botrytized must at different doses. After 4 minutes, laccase activity was measured by the syringaldazine method [2] using different concentration of subtract. Enzymatic kinetic constants (Km/Vmax) were determined according to Michaelis-Menten model. Furthermore, B. cinerea (strain 213) was grown in a stimulating liquid medium for laccase production [3]. The molecular weight (MW) and the effect of bentonite and tannins upon laccase were studied by SDS-PAGE. The results confirm that all oenological tannins inhibit laccase activity and that the higher the dose the lower the laccase activity. In this way, gallotannin, grape-seed and skins tannins seem to be the most effective tannins. All the tannins were as effective as AA, even though SO2 was clearly the most effective inhibitor. The laccase produced by B. cinerea had a MW of 95 kDa. After bentonite treatment all wine protein bands disappeared and laccase band decreased slightly although its activity remains stable. The interaction between different oenological tannins and laccase was analyzed by measuring the reduction of the intensity of the laccase band. In general, the reduction of band intensity correlates with the reduction of laccase enzymatic activity. 

It can be concluded therefore that oenological tannins a good candidate to prevent laccase effects, helping to diminish the SO2 dose in grapes infected by B. cinerea. 

[1] Vignault, A.; Pascual, O.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Canals, J.M.; Teissedre, P-L.; Zamora, F. Oeno One, 2019. 
[2] Urbano Cuadrado, M.; Pérez-Juan, P.M.; Luque de Castro, M.; Gomez-Nieto, M.A., Anal Chim Acta, 2005, 553, 99-104. 
[3] Quijada-Morin, N.; Garcia, F.; Lambert, K.; Walker, A.S.; Tiers, L.; Viaud, M.; Sauvage, F-X.; Hirtz, C.; Saucier, C.; Aust J Grape Wine Res, 2018, 24, 241-251.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Fernando Zamora (1), Adeline Vignault (2), Jordi Gombau (1), Michael Jourdes (2), Virginie Moine (3), Joan Miquel Canals (1), Pierre-Louis Teissedre (2)

1) Departament de Bioquímica i Biotecnologia. Facultat d’Enologia. Universitat Rovira i Virgili. C/ Marcel.lí Domingo 1, 43007-Tarragona (Spain)
2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
3) Laffort, 11 rue Aristide berges, 33270 Floirac, France

Contact the author

Keywords

Oenological tannins, Botrytis cinerea laccase, Kinetics, SDS-PAGE 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Tannin potential and molecular toasting in cooperage: a tool to modulate fruity expression of red wine

AIM: Oak wood play traditionally a huge role in making fine red wines. During wine maturation, barrel yields some of its constituents to the wine and leads to the improvement of its quality, contributing to richness and complexity [1].

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction