terclim by ICS banner
IVES 9 IVES Conference Series 9 REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Abstract

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level. In this study, six grapevine varieties (Syrah, Petit Syrah, Petit Verdot, Tempranillo, Sangiovese, and Pinot Noir), grown in Ramat Negev (30°58’43.4″N 34°42’31.6″E, 300 m asl and 79.4 mm rainfall) experimental vineyard showing different sugar accumulation patterns between temperature regimes were studied during a heatwave event. The physiological activities of these varieties were measured at three different times (7am, 12pm and 6 pm) during the heatwave. GC-MS based metabolite profiling and targeted transcript analysis were used to study the central metabolism in leaves in response to increasing temperature from morning to evening. Results showed that Pinot Noir had higher rates of transpiration, stomatal conductance and photosynthetic assimilation compared to Syrah. The metabolite profiling analysis revealed that the metabolic activity was generally higher in the morning for all varieties, decreasing during noon and evening. This research provides valuable insights into the impact of global warming on grapevine metabolism and the potential implications for wine production.

 

1. Alleweldt, G., Dettweiler-Munch, E., (1992) The genetic resources of Vitis. Genetic and geographic origin of grape cultivars, their prime names and synonyms.-Siebeldingen, Federal Republic of Germ⟨ny: Institut f? r Rebenz? chtung Geilweilerhof.
2. Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carb metabolis and climate change: elevated CO₂ and temperature im-pacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32–49. https://doi.org/10.1111/nph.15283 
3. Reshef, N., Fait, A., & Agam, N. (2019). Grape berry position affects the diurnal dynamics of its metabolic profile. Plant Cell and Environment, 42(6), 1897–1912. https://doi.org/10.1111/pce.13522
4. Gashu, K., Sikron Persi, N., Drori, E., Harcavi, E., Agam, N., Bustan, A., Fait, A., (2020) Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Frontiers in plant science 11, 1739.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nang Cherry¹ , Pankaj Kumar Verma², Kidanemaryam Wagaw¹ and Aaron Fait²

1. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

Grape (Vitis vinifera), high temperature, metabolite, transcript profiling

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.