terclim by ICS banner
IVES 9 IVES Conference Series 9 REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Abstract

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level. In this study, six grapevine varieties (Syrah, Petit Syrah, Petit Verdot, Tempranillo, Sangiovese, and Pinot Noir), grown in Ramat Negev (30°58’43.4″N 34°42’31.6″E, 300 m asl and 79.4 mm rainfall) experimental vineyard showing different sugar accumulation patterns between temperature regimes were studied during a heatwave event. The physiological activities of these varieties were measured at three different times (7am, 12pm and 6 pm) during the heatwave. GC-MS based metabolite profiling and targeted transcript analysis were used to study the central metabolism in leaves in response to increasing temperature from morning to evening. Results showed that Pinot Noir had higher rates of transpiration, stomatal conductance and photosynthetic assimilation compared to Syrah. The metabolite profiling analysis revealed that the metabolic activity was generally higher in the morning for all varieties, decreasing during noon and evening. This research provides valuable insights into the impact of global warming on grapevine metabolism and the potential implications for wine production.

 

1. Alleweldt, G., Dettweiler-Munch, E., (1992) The genetic resources of Vitis. Genetic and geographic origin of grape cultivars, their prime names and synonyms.-Siebeldingen, Federal Republic of Germ⟨ny: Institut f? r Rebenz? chtung Geilweilerhof.
2. Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carb metabolis and climate change: elevated CO₂ and temperature im-pacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32–49. https://doi.org/10.1111/nph.15283 
3. Reshef, N., Fait, A., & Agam, N. (2019). Grape berry position affects the diurnal dynamics of its metabolic profile. Plant Cell and Environment, 42(6), 1897–1912. https://doi.org/10.1111/pce.13522
4. Gashu, K., Sikron Persi, N., Drori, E., Harcavi, E., Agam, N., Bustan, A., Fait, A., (2020) Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Frontiers in plant science 11, 1739.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nang Cherry¹ , Pankaj Kumar Verma², Kidanemaryam Wagaw¹ and Aaron Fait²

1. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel
2. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 849900 Israel

Contact the author*

Keywords

Grape (Vitis vinifera), high temperature, metabolite, transcript profiling

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.