terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

Abstract

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

As part of this ongoing project, 35 vineyards (26 cv. Nebbiolo, 9 cv. Barbera) from Langhe, Roero, and Monferrato terroirs (Piemonte, Italy) were monitored during two consecutive vintages (2021-2022). The Nebbiolo vineyards were further classified, based on historical data, into ripening classes according to the harvest period estimation (early, medium, and late Nebbiolo). To study the evolution of grape ripening, four grape samples were taken from each vineyard during the ripening period (mid-August – late September), and grape quality assessment was performed by means of parameters commonly used in wine industry: juice technological maturity and phenolic ripeness parameters (total and extractable anthocyanins-EA%, share of tannins from seeds-Mp%). Preliminary results showed differences among cultivars and ripening classes, with a strong influence of the climatic conditions of the vintage, being both hot vintages with a strong water deficit (and decrease in berry weights and anthocyanin accumulation) for the 2022 vintage.

To have a more in-depth insight into the phenolic changes of the grapes during ripening, total extractions of the skins and seeds phenolics were carried out to better characterize the composition of Nebbiolo and Barbera berries. Lastly, this data was used to train a new approach based on Raman spectroscopy (RS), in an attempt to develop a method for the rapid determination of berry quality. At each sampling point, the acquisition of the grape Raman spectra was carried out in parallel with the other chemical analyses, developing a prediction model by correlating technological and phenolic ripening parameters with RS results.

Acknowledgments: The QUALSHELL project is funded by the PSR 2014-2020 Regione Piemonte (Italy), op. 16.1, European Agricultural Fund for Rural Development. We thank Martina Tarditi, Daniele Ronco, Alessandro Bottallo and the wineries supplying grape samples.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorenzo Ferrero¹, Alessio Sacco², Massimo Guaita³, Walter Salvano⁴, Andrea M. Rossi², Luca Rolle¹, Antonella Bosso³, Simone Giacosa¹

1. Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari. Corso Enotria 2/C, 12051 Alba, Italy
2. Istituto Nazionale di Ricerca Metrologica. Strada delle Cacce 91, 10135 Torino, Italy
3. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca Viticoltura ed Enologia. Via P. Micca 35, 14100 Asti, Italy
4. Terre del Barolo. Via Alba-Barolo 8, 12060 Castiglione Falletto, Italy

Contact the author*

Keywords

Grape quality, Phenolic ripeness, Anthocyanins, Red wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.