terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

Abstract

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

As part of this ongoing project, 35 vineyards (26 cv. Nebbiolo, 9 cv. Barbera) from Langhe, Roero, and Monferrato terroirs (Piemonte, Italy) were monitored during two consecutive vintages (2021-2022). The Nebbiolo vineyards were further classified, based on historical data, into ripening classes according to the harvest period estimation (early, medium, and late Nebbiolo). To study the evolution of grape ripening, four grape samples were taken from each vineyard during the ripening period (mid-August – late September), and grape quality assessment was performed by means of parameters commonly used in wine industry: juice technological maturity and phenolic ripeness parameters (total and extractable anthocyanins-EA%, share of tannins from seeds-Mp%). Preliminary results showed differences among cultivars and ripening classes, with a strong influence of the climatic conditions of the vintage, being both hot vintages with a strong water deficit (and decrease in berry weights and anthocyanin accumulation) for the 2022 vintage.

To have a more in-depth insight into the phenolic changes of the grapes during ripening, total extractions of the skins and seeds phenolics were carried out to better characterize the composition of Nebbiolo and Barbera berries. Lastly, this data was used to train a new approach based on Raman spectroscopy (RS), in an attempt to develop a method for the rapid determination of berry quality. At each sampling point, the acquisition of the grape Raman spectra was carried out in parallel with the other chemical analyses, developing a prediction model by correlating technological and phenolic ripening parameters with RS results.

Acknowledgments: The QUALSHELL project is funded by the PSR 2014-2020 Regione Piemonte (Italy), op. 16.1, European Agricultural Fund for Rural Development. We thank Martina Tarditi, Daniele Ronco, Alessandro Bottallo and the wineries supplying grape samples.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorenzo Ferrero¹, Alessio Sacco², Massimo Guaita³, Walter Salvano⁴, Andrea M. Rossi², Luca Rolle¹, Antonella Bosso³, Simone Giacosa¹

1. Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari. Corso Enotria 2/C, 12051 Alba, Italy
2. Istituto Nazionale di Ricerca Metrologica. Strada delle Cacce 91, 10135 Torino, Italy
3. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca Viticoltura ed Enologia. Via P. Micca 35, 14100 Asti, Italy
4. Terre del Barolo. Via Alba-Barolo 8, 12060 Castiglione Falletto, Italy

Contact the author*

Keywords

Grape quality, Phenolic ripeness, Anthocyanins, Red wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).