terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

Abstract

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

As part of this ongoing project, 35 vineyards (26 cv. Nebbiolo, 9 cv. Barbera) from Langhe, Roero, and Monferrato terroirs (Piemonte, Italy) were monitored during two consecutive vintages (2021-2022). The Nebbiolo vineyards were further classified, based on historical data, into ripening classes according to the harvest period estimation (early, medium, and late Nebbiolo). To study the evolution of grape ripening, four grape samples were taken from each vineyard during the ripening period (mid-August – late September), and grape quality assessment was performed by means of parameters commonly used in wine industry: juice technological maturity and phenolic ripeness parameters (total and extractable anthocyanins-EA%, share of tannins from seeds-Mp%). Preliminary results showed differences among cultivars and ripening classes, with a strong influence of the climatic conditions of the vintage, being both hot vintages with a strong water deficit (and decrease in berry weights and anthocyanin accumulation) for the 2022 vintage.

To have a more in-depth insight into the phenolic changes of the grapes during ripening, total extractions of the skins and seeds phenolics were carried out to better characterize the composition of Nebbiolo and Barbera berries. Lastly, this data was used to train a new approach based on Raman spectroscopy (RS), in an attempt to develop a method for the rapid determination of berry quality. At each sampling point, the acquisition of the grape Raman spectra was carried out in parallel with the other chemical analyses, developing a prediction model by correlating technological and phenolic ripening parameters with RS results.

Acknowledgments: The QUALSHELL project is funded by the PSR 2014-2020 Regione Piemonte (Italy), op. 16.1, European Agricultural Fund for Rural Development. We thank Martina Tarditi, Daniele Ronco, Alessandro Bottallo and the wineries supplying grape samples.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorenzo Ferrero¹, Alessio Sacco², Massimo Guaita³, Walter Salvano⁴, Andrea M. Rossi², Luca Rolle¹, Antonella Bosso³, Simone Giacosa¹

1. Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari. Corso Enotria 2/C, 12051 Alba, Italy
2. Istituto Nazionale di Ricerca Metrologica. Strada delle Cacce 91, 10135 Torino, Italy
3. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca Viticoltura ed Enologia. Via P. Micca 35, 14100 Asti, Italy
4. Terre del Barolo. Via Alba-Barolo 8, 12060 Castiglione Falletto, Italy

Contact the author*

Keywords

Grape quality, Phenolic ripeness, Anthocyanins, Red wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.