terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

Abstract

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

As part of this ongoing project, 35 vineyards (26 cv. Nebbiolo, 9 cv. Barbera) from Langhe, Roero, and Monferrato terroirs (Piemonte, Italy) were monitored during two consecutive vintages (2021-2022). The Nebbiolo vineyards were further classified, based on historical data, into ripening classes according to the harvest period estimation (early, medium, and late Nebbiolo). To study the evolution of grape ripening, four grape samples were taken from each vineyard during the ripening period (mid-August – late September), and grape quality assessment was performed by means of parameters commonly used in wine industry: juice technological maturity and phenolic ripeness parameters (total and extractable anthocyanins-EA%, share of tannins from seeds-Mp%). Preliminary results showed differences among cultivars and ripening classes, with a strong influence of the climatic conditions of the vintage, being both hot vintages with a strong water deficit (and decrease in berry weights and anthocyanin accumulation) for the 2022 vintage.

To have a more in-depth insight into the phenolic changes of the grapes during ripening, total extractions of the skins and seeds phenolics were carried out to better characterize the composition of Nebbiolo and Barbera berries. Lastly, this data was used to train a new approach based on Raman spectroscopy (RS), in an attempt to develop a method for the rapid determination of berry quality. At each sampling point, the acquisition of the grape Raman spectra was carried out in parallel with the other chemical analyses, developing a prediction model by correlating technological and phenolic ripening parameters with RS results.

Acknowledgments: The QUALSHELL project is funded by the PSR 2014-2020 Regione Piemonte (Italy), op. 16.1, European Agricultural Fund for Rural Development. We thank Martina Tarditi, Daniele Ronco, Alessandro Bottallo and the wineries supplying grape samples.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorenzo Ferrero¹, Alessio Sacco², Massimo Guaita³, Walter Salvano⁴, Andrea M. Rossi², Luca Rolle¹, Antonella Bosso³, Simone Giacosa¹

1. Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari. Corso Enotria 2/C, 12051 Alba, Italy
2. Istituto Nazionale di Ricerca Metrologica. Strada delle Cacce 91, 10135 Torino, Italy
3. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca Viticoltura ed Enologia. Via P. Micca 35, 14100 Asti, Italy
4. Terre del Barolo. Via Alba-Barolo 8, 12060 Castiglione Falletto, Italy

Contact the author*

Keywords

Grape quality, Phenolic ripeness, Anthocyanins, Red wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.