terclim by ICS banner
IVES 9 IVES Conference Series 9 ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

Abstract

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

As part of this ongoing project, 35 vineyards (26 cv. Nebbiolo, 9 cv. Barbera) from Langhe, Roero, and Monferrato terroirs (Piemonte, Italy) were monitored during two consecutive vintages (2021-2022). The Nebbiolo vineyards were further classified, based on historical data, into ripening classes according to the harvest period estimation (early, medium, and late Nebbiolo). To study the evolution of grape ripening, four grape samples were taken from each vineyard during the ripening period (mid-August – late September), and grape quality assessment was performed by means of parameters commonly used in wine industry: juice technological maturity and phenolic ripeness parameters (total and extractable anthocyanins-EA%, share of tannins from seeds-Mp%). Preliminary results showed differences among cultivars and ripening classes, with a strong influence of the climatic conditions of the vintage, being both hot vintages with a strong water deficit (and decrease in berry weights and anthocyanin accumulation) for the 2022 vintage.

To have a more in-depth insight into the phenolic changes of the grapes during ripening, total extractions of the skins and seeds phenolics were carried out to better characterize the composition of Nebbiolo and Barbera berries. Lastly, this data was used to train a new approach based on Raman spectroscopy (RS), in an attempt to develop a method for the rapid determination of berry quality. At each sampling point, the acquisition of the grape Raman spectra was carried out in parallel with the other chemical analyses, developing a prediction model by correlating technological and phenolic ripening parameters with RS results.

Acknowledgments: The QUALSHELL project is funded by the PSR 2014-2020 Regione Piemonte (Italy), op. 16.1, European Agricultural Fund for Rural Development. We thank Martina Tarditi, Daniele Ronco, Alessandro Bottallo and the wineries supplying grape samples.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorenzo Ferrero¹, Alessio Sacco², Massimo Guaita³, Walter Salvano⁴, Andrea M. Rossi², Luca Rolle¹, Antonella Bosso³, Simone Giacosa¹

1. Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari. Corso Enotria 2/C, 12051 Alba, Italy
2. Istituto Nazionale di Ricerca Metrologica. Strada delle Cacce 91, 10135 Torino, Italy
3. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca Viticoltura ed Enologia. Via P. Micca 35, 14100 Asti, Italy
4. Terre del Barolo. Via Alba-Barolo 8, 12060 Castiglione Falletto, Italy

Contact the author*

Keywords

Grape quality, Phenolic ripeness, Anthocyanins, Red wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.