terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Abstract

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elaboration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.

The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration. Bacterial strains were typed by multiple loci VNTR analysis (MLVA) based on five tandem repeats loci and 3 different strains were chosen as starters for the sparkling wine production.

Xinomavro base wine was treated according to the winery production protocol and second fermentation was realised in the bottle under 6 different inoculation schemes.1) addition of S. cerevisiae (Lalvin DV10) 2) addition of S. cerevisiae (Lalvin DV10) and Lysozyme (40g/hL) 3) addition of S. cerevisiae (Lalvin DV10) and O. oeni Greek strain (UNIWA collection) 4) addition of S. cerevisiae (Lalvin DV10) and O. oeni French strain (CRBO collection) 5) addition of S. cerevisiae (Lalvin DV10) and O. oeni Commercial strain 6) addition of Schizo saccharomyces pombe strain (NRRL collection). Twelve months after the second fermentation in the bottle, oenological parameters were determined according to the OIV protocols, the volatile compounds produced were measured by GC/MS, and the metabolomic fingerprint analysis were acquired by an UPLC-HDMS-QTof-MS instrument. Finally, all produced wines were evaluated by quantitative descriptive sensorial analysis.

Malolactic fermentations were realized in all cases except the condition n°2 where lysozyme was added. Forty compounds were quantified and separated according to their chemical classes (monoterpenes, norisoprenoids, aldehydes, alcohols, esters, acids, and ketones) while statistical analysis showed the presence of three groups of sparkling wines according to the inoculation scheme. The untargeted metabolomic approach clearly discriminated the action of bacteria and revealed intra species variability at strain level. This is the first time that highlights the role of lactic acid bacteria and precisely of the species of O. oeni to sparkling wine elaboration.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Maria DIMOPOULOU1,2, Margot PAULIN1, Olivier CLAISSE1, Cécile MIOT-SERTIER1, Fotini DROSOU2, Panagiotis ARAPITSAS2,3, Marguerite DOLS-LAFARGUE1

1. Bordeaux, Bordeaux INP, INRAE, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
3. Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy

Contact the author*

Keywords

sparkling wine, malolactic fermentation, Xinomavro, bacteria

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality. Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.