terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Abstract

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elaboration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.

The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration. Bacterial strains were typed by multiple loci VNTR analysis (MLVA) based on five tandem repeats loci and 3 different strains were chosen as starters for the sparkling wine production.

Xinomavro base wine was treated according to the winery production protocol and second fermentation was realised in the bottle under 6 different inoculation schemes.1) addition of S. cerevisiae (Lalvin DV10) 2) addition of S. cerevisiae (Lalvin DV10) and Lysozyme (40g/hL) 3) addition of S. cerevisiae (Lalvin DV10) and O. oeni Greek strain (UNIWA collection) 4) addition of S. cerevisiae (Lalvin DV10) and O. oeni French strain (CRBO collection) 5) addition of S. cerevisiae (Lalvin DV10) and O. oeni Commercial strain 6) addition of Schizo saccharomyces pombe strain (NRRL collection). Twelve months after the second fermentation in the bottle, oenological parameters were determined according to the OIV protocols, the volatile compounds produced were measured by GC/MS, and the metabolomic fingerprint analysis were acquired by an UPLC-HDMS-QTof-MS instrument. Finally, all produced wines were evaluated by quantitative descriptive sensorial analysis.

Malolactic fermentations were realized in all cases except the condition n°2 where lysozyme was added. Forty compounds were quantified and separated according to their chemical classes (monoterpenes, norisoprenoids, aldehydes, alcohols, esters, acids, and ketones) while statistical analysis showed the presence of three groups of sparkling wines according to the inoculation scheme. The untargeted metabolomic approach clearly discriminated the action of bacteria and revealed intra species variability at strain level. This is the first time that highlights the role of lactic acid bacteria and precisely of the species of O. oeni to sparkling wine elaboration.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Maria DIMOPOULOU1,2, Margot PAULIN1, Olivier CLAISSE1, Cécile MIOT-SERTIER1, Fotini DROSOU2, Panagiotis ARAPITSAS2,3, Marguerite DOLS-LAFARGUE1

1. Bordeaux, Bordeaux INP, INRAE, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
3. Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy

Contact the author*

Keywords

sparkling wine, malolactic fermentation, Xinomavro, bacteria

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.