terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Abstract

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elaboration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.

The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration. Bacterial strains were typed by multiple loci VNTR analysis (MLVA) based on five tandem repeats loci and 3 different strains were chosen as starters for the sparkling wine production.

Xinomavro base wine was treated according to the winery production protocol and second fermentation was realised in the bottle under 6 different inoculation schemes.1) addition of S. cerevisiae (Lalvin DV10) 2) addition of S. cerevisiae (Lalvin DV10) and Lysozyme (40g/hL) 3) addition of S. cerevisiae (Lalvin DV10) and O. oeni Greek strain (UNIWA collection) 4) addition of S. cerevisiae (Lalvin DV10) and O. oeni French strain (CRBO collection) 5) addition of S. cerevisiae (Lalvin DV10) and O. oeni Commercial strain 6) addition of Schizo saccharomyces pombe strain (NRRL collection). Twelve months after the second fermentation in the bottle, oenological parameters were determined according to the OIV protocols, the volatile compounds produced were measured by GC/MS, and the metabolomic fingerprint analysis were acquired by an UPLC-HDMS-QTof-MS instrument. Finally, all produced wines were evaluated by quantitative descriptive sensorial analysis.

Malolactic fermentations were realized in all cases except the condition n°2 where lysozyme was added. Forty compounds were quantified and separated according to their chemical classes (monoterpenes, norisoprenoids, aldehydes, alcohols, esters, acids, and ketones) while statistical analysis showed the presence of three groups of sparkling wines according to the inoculation scheme. The untargeted metabolomic approach clearly discriminated the action of bacteria and revealed intra species variability at strain level. This is the first time that highlights the role of lactic acid bacteria and precisely of the species of O. oeni to sparkling wine elaboration.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Maria DIMOPOULOU1,2, Margot PAULIN1, Olivier CLAISSE1, Cécile MIOT-SERTIER1, Fotini DROSOU2, Panagiotis ARAPITSAS2,3, Marguerite DOLS-LAFARGUE1

1. Bordeaux, Bordeaux INP, INRAE, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
3. Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy

Contact the author*

Keywords

sparkling wine, malolactic fermentation, Xinomavro, bacteria

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan. Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.