terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Abstract

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines. Distilled wines produced in Cognac appellation of origin undergo MLF. Given the lack of knowledge of LAB present in distillation wines, the control of MLF and the further storage of wines is a difficult task. Therefore, the aim of this work is to analyze the biodiversity of O. oeni strains naturally occurring in cognac distilled wines and to determine if they confer a particular quality to the spirit after distillation.
559 samples of wines were collected before, during and after MLF from 24 wineries located in almost all the regions of Cognac appellation during 4 vintages from 2019 to 2022. The samples were processed to isolate single colonies of LAB, which were typed at the species and strain levels by MLVA (Multiple Loci of Variable Number of Tandem Repeats Analysis). About 5000 colonies of O. oeni isolates were obtained and assigned to 688 different strains. The most abundant strains in each winery were further analyzed at the genomic level. A total of 49 draft genomes were produced by Illumina MiSeq. The distances between these 49 genomes and 240 other publicly available O. oeni genomes were calculated using ANI (Average Nucleotide Identity) and used to reconstruct a phylogenetic tree. The tree showed that 34 of the 49 strains grouped together in a new phylogenetic lineage and contain only stains isolated from cognac wines. The 34 strains of this lineage represented more than half of the colonies isolated during MLF in the wineries, which suggests that this lineage is specific and predominant in all the cognac wines. Moreover, the same strains were often found in the same wineries during consecutive vintages. The results suggest that the strains of this genetic lineage share specific genetic properties conferring them a better adaptation to cognac wines, and may in addition confer specific aromatic characteristics to cognac wines during MLF.

 

1. Lorentzen, M.P.G., and Lucas, P.M. (2019). Distribution of Oenococcus oeni populations in natural habitats. Applied Microbio-logy and Biotechnology 103, 2937–2945.
2. Claisse, O., and Lonvaud-Funel, A. (2012). Development of a multilocus variable number of tandem repeat typing method for Oenococcus oeni. Food Microbiology 30, 340–347.
3. Claisse, O., and Lonvaud-Funel, A. (2014). Multiplex variable number of tandem repeats for Oenococcus oeni and applica-tions. Food Microbiology 38, 80–86

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sayoko Matsumoto¹, Olivier Claisse¹, Cécile Miot-Sertier¹, Rebekah Hicks David², Valentin Lebrec², Amandine Bernier², Panagiotis Stamatopoulos², Xavier Poitou², Jana Rudolf¹, Patrick Lucas¹

1. Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Hennessy, Rue de la Richonne, CS20020 – 16100, Cognac Cedex, France

Contact the author*

Keywords

Oenococcus oeni, Malolactic fermentation, Cognac, Biodiversity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.