terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Abstract

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines. Distilled wines produced in Cognac appellation of origin undergo MLF. Given the lack of knowledge of LAB present in distillation wines, the control of MLF and the further storage of wines is a difficult task. Therefore, the aim of this work is to analyze the biodiversity of O. oeni strains naturally occurring in cognac distilled wines and to determine if they confer a particular quality to the spirit after distillation.
559 samples of wines were collected before, during and after MLF from 24 wineries located in almost all the regions of Cognac appellation during 4 vintages from 2019 to 2022. The samples were processed to isolate single colonies of LAB, which were typed at the species and strain levels by MLVA (Multiple Loci of Variable Number of Tandem Repeats Analysis). About 5000 colonies of O. oeni isolates were obtained and assigned to 688 different strains. The most abundant strains in each winery were further analyzed at the genomic level. A total of 49 draft genomes were produced by Illumina MiSeq. The distances between these 49 genomes and 240 other publicly available O. oeni genomes were calculated using ANI (Average Nucleotide Identity) and used to reconstruct a phylogenetic tree. The tree showed that 34 of the 49 strains grouped together in a new phylogenetic lineage and contain only stains isolated from cognac wines. The 34 strains of this lineage represented more than half of the colonies isolated during MLF in the wineries, which suggests that this lineage is specific and predominant in all the cognac wines. Moreover, the same strains were often found in the same wineries during consecutive vintages. The results suggest that the strains of this genetic lineage share specific genetic properties conferring them a better adaptation to cognac wines, and may in addition confer specific aromatic characteristics to cognac wines during MLF.

 

1. Lorentzen, M.P.G., and Lucas, P.M. (2019). Distribution of Oenococcus oeni populations in natural habitats. Applied Microbio-logy and Biotechnology 103, 2937–2945.
2. Claisse, O., and Lonvaud-Funel, A. (2012). Development of a multilocus variable number of tandem repeat typing method for Oenococcus oeni. Food Microbiology 30, 340–347.
3. Claisse, O., and Lonvaud-Funel, A. (2014). Multiplex variable number of tandem repeats for Oenococcus oeni and applica-tions. Food Microbiology 38, 80–86

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sayoko Matsumoto¹, Olivier Claisse¹, Cécile Miot-Sertier¹, Rebekah Hicks David², Valentin Lebrec², Amandine Bernier², Panagiotis Stamatopoulos², Xavier Poitou², Jana Rudolf¹, Patrick Lucas¹

1. Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Hennessy, Rue de la Richonne, CS20020 – 16100, Cognac Cedex, France

Contact the author*

Keywords

Oenococcus oeni, Malolactic fermentation, Cognac, Biodiversity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.