terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Abstract

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines. Distilled wines produced in Cognac appellation of origin undergo MLF. Given the lack of knowledge of LAB present in distillation wines, the control of MLF and the further storage of wines is a difficult task. Therefore, the aim of this work is to analyze the biodiversity of O. oeni strains naturally occurring in cognac distilled wines and to determine if they confer a particular quality to the spirit after distillation.
559 samples of wines were collected before, during and after MLF from 24 wineries located in almost all the regions of Cognac appellation during 4 vintages from 2019 to 2022. The samples were processed to isolate single colonies of LAB, which were typed at the species and strain levels by MLVA (Multiple Loci of Variable Number of Tandem Repeats Analysis). About 5000 colonies of O. oeni isolates were obtained and assigned to 688 different strains. The most abundant strains in each winery were further analyzed at the genomic level. A total of 49 draft genomes were produced by Illumina MiSeq. The distances between these 49 genomes and 240 other publicly available O. oeni genomes were calculated using ANI (Average Nucleotide Identity) and used to reconstruct a phylogenetic tree. The tree showed that 34 of the 49 strains grouped together in a new phylogenetic lineage and contain only stains isolated from cognac wines. The 34 strains of this lineage represented more than half of the colonies isolated during MLF in the wineries, which suggests that this lineage is specific and predominant in all the cognac wines. Moreover, the same strains were often found in the same wineries during consecutive vintages. The results suggest that the strains of this genetic lineage share specific genetic properties conferring them a better adaptation to cognac wines, and may in addition confer specific aromatic characteristics to cognac wines during MLF.

 

1. Lorentzen, M.P.G., and Lucas, P.M. (2019). Distribution of Oenococcus oeni populations in natural habitats. Applied Microbio-logy and Biotechnology 103, 2937–2945.
2. Claisse, O., and Lonvaud-Funel, A. (2012). Development of a multilocus variable number of tandem repeat typing method for Oenococcus oeni. Food Microbiology 30, 340–347.
3. Claisse, O., and Lonvaud-Funel, A. (2014). Multiplex variable number of tandem repeats for Oenococcus oeni and applica-tions. Food Microbiology 38, 80–86

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sayoko Matsumoto¹, Olivier Claisse¹, Cécile Miot-Sertier¹, Rebekah Hicks David², Valentin Lebrec², Amandine Bernier², Panagiotis Stamatopoulos², Xavier Poitou², Jana Rudolf¹, Patrick Lucas¹

1. Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Hennessy, Rue de la Richonne, CS20020 – 16100, Cognac Cedex, France

Contact the author*

Keywords

Oenococcus oeni, Malolactic fermentation, Cognac, Biodiversity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.