terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Abstract

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines. Distilled wines produced in Cognac appellation of origin undergo MLF. Given the lack of knowledge of LAB present in distillation wines, the control of MLF and the further storage of wines is a difficult task. Therefore, the aim of this work is to analyze the biodiversity of O. oeni strains naturally occurring in cognac distilled wines and to determine if they confer a particular quality to the spirit after distillation.
559 samples of wines were collected before, during and after MLF from 24 wineries located in almost all the regions of Cognac appellation during 4 vintages from 2019 to 2022. The samples were processed to isolate single colonies of LAB, which were typed at the species and strain levels by MLVA (Multiple Loci of Variable Number of Tandem Repeats Analysis). About 5000 colonies of O. oeni isolates were obtained and assigned to 688 different strains. The most abundant strains in each winery were further analyzed at the genomic level. A total of 49 draft genomes were produced by Illumina MiSeq. The distances between these 49 genomes and 240 other publicly available O. oeni genomes were calculated using ANI (Average Nucleotide Identity) and used to reconstruct a phylogenetic tree. The tree showed that 34 of the 49 strains grouped together in a new phylogenetic lineage and contain only stains isolated from cognac wines. The 34 strains of this lineage represented more than half of the colonies isolated during MLF in the wineries, which suggests that this lineage is specific and predominant in all the cognac wines. Moreover, the same strains were often found in the same wineries during consecutive vintages. The results suggest that the strains of this genetic lineage share specific genetic properties conferring them a better adaptation to cognac wines, and may in addition confer specific aromatic characteristics to cognac wines during MLF.

 

1. Lorentzen, M.P.G., and Lucas, P.M. (2019). Distribution of Oenococcus oeni populations in natural habitats. Applied Microbio-logy and Biotechnology 103, 2937–2945.
2. Claisse, O., and Lonvaud-Funel, A. (2012). Development of a multilocus variable number of tandem repeat typing method for Oenococcus oeni. Food Microbiology 30, 340–347.
3. Claisse, O., and Lonvaud-Funel, A. (2014). Multiplex variable number of tandem repeats for Oenococcus oeni and applica-tions. Food Microbiology 38, 80–86

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sayoko Matsumoto¹, Olivier Claisse¹, Cécile Miot-Sertier¹, Rebekah Hicks David², Valentin Lebrec², Amandine Bernier², Panagiotis Stamatopoulos², Xavier Poitou², Jana Rudolf¹, Patrick Lucas¹

1. Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Hennessy, Rue de la Richonne, CS20020 – 16100, Cognac Cedex, France

Contact the author*

Keywords

Oenococcus oeni, Malolactic fermentation, Cognac, Biodiversity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.