terclim by ICS banner
IVES 9 IVES Conference Series 9 ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Abstract

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019; Sternes and Borneman, 2016). This study was performed to better understand the distribution of the phylogroups in wine and cider. Their population dynamics were determined by qPCR all through wine and cider productions, and the behavior of the strains was analyzed in synthetic wines and ciders. Phylogroups A, B and C were all represented in grape must and throughout the alcoholic fermentation, but on the transition to MLF, only phylogroup A remained at high levels in all wine productions. In the case of cider, phylogroups A, B and C were detected in stable levels during the process. When they were tested in synthetic wine and cider, all phylogroups performed MLF, but with different survival rates depending on the ethanol content. In this sense, ethanol and fermentation kinetics are the main agent that drives the selection of phylogroup A strains in wine, while B and C strains dominates in cider containing less ethanol.

 

1. Campbell-Sills, H., El Khoury, M., Favier, M., Romano, A., Biasioli, F., Spano, G., Sherman, D.J., Bouchez, O., Coton, E., Coton, M., Okada, S., Tanaka, N., Dols-Lafargue, M., Lucas, P.M., 2015. Phylogenomic analysis of Oenococcus oeni reveals specific domestication of strains to cider and wines. Genome Biol. Evol. 7, 1506–1518. https://doi.org/10.1093/gbe/evv084
2. Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G., Coton, E., 2017. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 93, 1–16. https://doi.org/10.1093/femsec/fix048
3. Lonvaud-Funel, A., 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwen-hoek, Int. J. Gen. Mol. Microbiol. 76, 317–331. https://doi.org/10.1023/A:1002088931106
4. Lorentzen, M.P., Campbell-Sills, H., Jorgensen, T.S., Nielsen, T.K., Coton, M., Coton, E., Hansen, L., Lucas, P.M., 2019. Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains. BMC Genomics 20, 1–15. https://doi.org/10.1186/s12864-019-5692-3
5. Sternes, P.R., Borneman, A.R., 2016. Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni. BMC Genomics 17, 1–15. https://doi.org/10.1186/s12864-016-2604-7

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aitor Balmaseda1,2,3, Marc Lorentzen1,2, Lucie Dutilh1,2, Rémi Bauduin⁴, Hugues Guichard⁴, Séverine Ollivier4, Cécile Miot-Sertier1,2, Patrick M. Lucas1,2

1. Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Grup de Biotecnologia Enològi-ca, C/ Marcel⟨lí Domingo 1, 43007 Tarragona, Catalonia, Spain
4. Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, Le Rheu, 35653, France

Contact the author*

Keywords

Oenococcus oeni, Malolactic fermentation, Population dynamics, phylogroups

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.