terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance. Therefore, the objective of this study is to evaluate the effect of sequential time (2, 4 and 6 days) of T. delbrueckii/ S. cerevisiae on the achievement of MLF by two strains of Oenococcus oeni. AF and the following MLF were performed in a synthetic must supplemented with linoleic acid and b-sitosterol. The results showed that differences were observed in the duration of the AF as for example co-inoculated AF lasted less time, even compared to the control, while sequential AF were prolonged in time. Regarding the abundance of the species in co-inoculation S. cerevisiae dominated the fermentation process from the middle to the end as previously described in literature [2,3] . In sequential fermentations, T. delbrueckii represented a higher percentage at the end, 40-30% of the total population. In relation to the differences between sequential conditions it seems that during the fermentation with 4 days of T. delbruekii contact the population was higher than 2 and 6 days. As for the supplementation with lipids to the synthetic must we could observe that yeast viability increased, acetic acid decreased and AF and MLF performance improved. Regarding MLF T. delbrueckii improved the total time of the process comparing with S. cerevisiae as described in literature [1,4] . However, in the co-inoculated wines MLF had a longer duration. Regarding sequential wines, in the 4-day contact condition with T. delbruekii the MLF was shortened to two days, with the two O. oeni strains, so this seemed to be the best strategy combination.

Overall, these findings highlight the importance of considering both the inoculation strategy and the specific strains used to a better understanding of the complex interactions between these species in the fermentation process.

 

1. Balmaseda, A., Rozès, N., Bordons, A., & Reguant, C. (2021). Torulaspora delbrueckii promotes malolactic fermentation in high polyphenolic red wines. LWT, 148. https://doi.org/10.1016/j.lwt.2021.111777
2. Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., & Alexandre, H. (2020). Yeast-yeast interactions: Mechanisms, methodologies and impact on composition. In Microorganisms (Vol. 8, Issue 4). MDPI AG. https://doi.org/10.3390/microorganisms8040600
3. Lleixà, J., Manzano, M., Mas, A., & Portillo, M. del C. (2016). Saccharomyces and non-Saccharomyces competition during microvinification under different sugar and nitrogen conditions. Frontiers in Microbiology, 7(DEC). https://doi.org/10.3389/fmicb.2016.01959
4. Martín-García, A., Balmaseda, A., Bordons, A., & Reguant, C. (2020). Effect of the inoculation strategy of non-Saccharomyces yeasts on wine malolactic fermentation. Oeno One, 54(1), 101–108. https://doi.org/10.20870/oeno-one.2020.54.1.2906
5. Ruiz-de-Villa, C., Poblet, M., Cordero-Otero, R., Bordons, A., Reguant, C., & Rozès, N. (2023). Screening of Saccharomyces cerevisiae and Torulaspora delbrueckii strains in relation to their effect on malolactic fermentation. Food Microbiology, 112. https://doi.org/10.1016/j.fm.2022.104212

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Candela Ruiz-de-Villa¹, Montse Poblet¹, Albert Bordons², Cristina Reguant², Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universi-tat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
2. Grup de Biotecnologia Enològica,Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.

Contact the author*

Keywords

Wine microorganisms, Alcoholic fermentation, Malolactic fermentation, Inoculation strategy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).