terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance. Therefore, the objective of this study is to evaluate the effect of sequential time (2, 4 and 6 days) of T. delbrueckii/ S. cerevisiae on the achievement of MLF by two strains of Oenococcus oeni. AF and the following MLF were performed in a synthetic must supplemented with linoleic acid and b-sitosterol. The results showed that differences were observed in the duration of the AF as for example co-inoculated AF lasted less time, even compared to the control, while sequential AF were prolonged in time. Regarding the abundance of the species in co-inoculation S. cerevisiae dominated the fermentation process from the middle to the end as previously described in literature [2,3] . In sequential fermentations, T. delbrueckii represented a higher percentage at the end, 40-30% of the total population. In relation to the differences between sequential conditions it seems that during the fermentation with 4 days of T. delbruekii contact the population was higher than 2 and 6 days. As for the supplementation with lipids to the synthetic must we could observe that yeast viability increased, acetic acid decreased and AF and MLF performance improved. Regarding MLF T. delbrueckii improved the total time of the process comparing with S. cerevisiae as described in literature [1,4] . However, in the co-inoculated wines MLF had a longer duration. Regarding sequential wines, in the 4-day contact condition with T. delbruekii the MLF was shortened to two days, with the two O. oeni strains, so this seemed to be the best strategy combination.

Overall, these findings highlight the importance of considering both the inoculation strategy and the specific strains used to a better understanding of the complex interactions between these species in the fermentation process.

 

1. Balmaseda, A., Rozès, N., Bordons, A., & Reguant, C. (2021). Torulaspora delbrueckii promotes malolactic fermentation in high polyphenolic red wines. LWT, 148. https://doi.org/10.1016/j.lwt.2021.111777
2. Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., & Alexandre, H. (2020). Yeast-yeast interactions: Mechanisms, methodologies and impact on composition. In Microorganisms (Vol. 8, Issue 4). MDPI AG. https://doi.org/10.3390/microorganisms8040600
3. Lleixà, J., Manzano, M., Mas, A., & Portillo, M. del C. (2016). Saccharomyces and non-Saccharomyces competition during microvinification under different sugar and nitrogen conditions. Frontiers in Microbiology, 7(DEC). https://doi.org/10.3389/fmicb.2016.01959
4. Martín-García, A., Balmaseda, A., Bordons, A., & Reguant, C. (2020). Effect of the inoculation strategy of non-Saccharomyces yeasts on wine malolactic fermentation. Oeno One, 54(1), 101–108. https://doi.org/10.20870/oeno-one.2020.54.1.2906
5. Ruiz-de-Villa, C., Poblet, M., Cordero-Otero, R., Bordons, A., Reguant, C., & Rozès, N. (2023). Screening of Saccharomyces cerevisiae and Torulaspora delbrueckii strains in relation to their effect on malolactic fermentation. Food Microbiology, 112. https://doi.org/10.1016/j.fm.2022.104212

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Candela Ruiz-de-Villa¹, Montse Poblet¹, Albert Bordons², Cristina Reguant², Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universi-tat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
2. Grup de Biotecnologia Enològica,Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.

Contact the author*

Keywords

Wine microorganisms, Alcoholic fermentation, Malolactic fermentation, Inoculation strategy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].