terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance. Therefore, the objective of this study is to evaluate the effect of sequential time (2, 4 and 6 days) of T. delbrueckii/ S. cerevisiae on the achievement of MLF by two strains of Oenococcus oeni. AF and the following MLF were performed in a synthetic must supplemented with linoleic acid and b-sitosterol. The results showed that differences were observed in the duration of the AF as for example co-inoculated AF lasted less time, even compared to the control, while sequential AF were prolonged in time. Regarding the abundance of the species in co-inoculation S. cerevisiae dominated the fermentation process from the middle to the end as previously described in literature [2,3] . In sequential fermentations, T. delbrueckii represented a higher percentage at the end, 40-30% of the total population. In relation to the differences between sequential conditions it seems that during the fermentation with 4 days of T. delbruekii contact the population was higher than 2 and 6 days. As for the supplementation with lipids to the synthetic must we could observe that yeast viability increased, acetic acid decreased and AF and MLF performance improved. Regarding MLF T. delbrueckii improved the total time of the process comparing with S. cerevisiae as described in literature [1,4] . However, in the co-inoculated wines MLF had a longer duration. Regarding sequential wines, in the 4-day contact condition with T. delbruekii the MLF was shortened to two days, with the two O. oeni strains, so this seemed to be the best strategy combination.

Overall, these findings highlight the importance of considering both the inoculation strategy and the specific strains used to a better understanding of the complex interactions between these species in the fermentation process.

 

1. Balmaseda, A., Rozès, N., Bordons, A., & Reguant, C. (2021). Torulaspora delbrueckii promotes malolactic fermentation in high polyphenolic red wines. LWT, 148. https://doi.org/10.1016/j.lwt.2021.111777
2. Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., & Alexandre, H. (2020). Yeast-yeast interactions: Mechanisms, methodologies and impact on composition. In Microorganisms (Vol. 8, Issue 4). MDPI AG. https://doi.org/10.3390/microorganisms8040600
3. Lleixà, J., Manzano, M., Mas, A., & Portillo, M. del C. (2016). Saccharomyces and non-Saccharomyces competition during microvinification under different sugar and nitrogen conditions. Frontiers in Microbiology, 7(DEC). https://doi.org/10.3389/fmicb.2016.01959
4. Martín-García, A., Balmaseda, A., Bordons, A., & Reguant, C. (2020). Effect of the inoculation strategy of non-Saccharomyces yeasts on wine malolactic fermentation. Oeno One, 54(1), 101–108. https://doi.org/10.20870/oeno-one.2020.54.1.2906
5. Ruiz-de-Villa, C., Poblet, M., Cordero-Otero, R., Bordons, A., Reguant, C., & Rozès, N. (2023). Screening of Saccharomyces cerevisiae and Torulaspora delbrueckii strains in relation to their effect on malolactic fermentation. Food Microbiology, 112. https://doi.org/10.1016/j.fm.2022.104212

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Candela Ruiz-de-Villa¹, Montse Poblet¹, Albert Bordons², Cristina Reguant², Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universi-tat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
2. Grup de Biotecnologia Enològica,Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.

Contact the author*

Keywords

Wine microorganisms, Alcoholic fermentation, Malolactic fermentation, Inoculation strategy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.