terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Abstract

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

Yeast populations were collected from spontaneous alcoholic fermentation of Savatiano musts. The yeast isolates were tested for basic oenological parameters including sulphur dioxide and ethanol tolerance as well as H₂S production. Four S.cerevisiae strains were selected for microvinification in order to assess their technological properties and sensorial characteristics. The fermentation kinetics was monitored throughout the experiment, while the content of organic acids and glycerol production have been controlled daily using HPLC analysis.

Our study revealed that the indigenous S. cerevisiae strains are able to metabolize all sugars, produce a satisfactory amount of ethanol and contribute to a distinct sensory profile. Although, different growth rates and metabolic differences between strains were observed. The overall evaluation of the data highlights the potential of the indigenous S. cerevisiae strains to provide promising results in wine industry.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Despina Lola¹, Spiros Paramithiotis², Maria Dimopoulou³, Aikaterini Tzamourani³, Elli Goulioti¹, Yorgos Kotseridis¹

1. Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
2. Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
3. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Athens, Greece

Contact the author*

Keywords

yeast selection, technological properties, sensory evaluation, terroir wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].