GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

Abstract

Context of the review – The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies. In the last 15 years, considerable knowledge has accumulated about the grapevine genome as well as the mechanisms involved in the interaction of the vine with the environment, pests and diseases. Despite the difficulties associated with genetic mapping in this species (allele diversity, chimerism, long generation intervals…), several major QTLs controlling important vegetative or reproductive traits have been identified. Considering the huge genotypic and phenotypic diversities existing in Vitis, breeding offers a substantial range of options to improve the performances of cultivars. However, even if marker-assisted selection was largely developed to shorten breeding programs, the selection of improved cultivars, whether for agronomic traits or disease tolerances, is still long and uncertain. Moreover, breeding by crossing does not preserve cultivar genetic background, when the wine industry and market being still based on varietal wines.

Significance of the review – In grapevine, pioneering biotechnologies were set up in the 1960’s to propagate and/or clean the material from micro-organisms. In the 1990’s, the basis of genetic engineering was primary established through biolistic or Agrobacterium with several derived technologies refined in the last 10 years. The latest advance is represented by a group of technologies based on genome editing which allows a much more precise modification of the genome. These technologies, so-called NBT (new breeding technologies), which theoretically do not deconstruct the phenotype of existing cultivars, could be potentially better accepted by the wine industry and consumers than previous GMO approaches. This paper review the current state-of-the-art of the biotechnologies available for grapevine genome manipulation and future prospects for genetic improvement.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Lorenza DALLA COSTA (1), Mickael MALNOY (1), David LECOURIEUX (2), Laurent DELUC (3), Fatma OUAKED- LECOURIEUX (2), Mark R. THOMAS (4) and Laurent TORREGROSA (5)

(1) Dept. of Biology and Genomic of Fruit Plants, Foundation E. Mach, 38010 San Michele all’Adige, Italy
(2) ISVV-EGFV, CNRS, INRA, Uni Bordeaux, 33883 Villenave d’Ornon, France
(3) Dept. of Horticulture, Oregon State University, OR 97331, Corvallis, USA
(4) CSIRO Agriculture and Food, Hartley Grove, Urrbrae SA 5064, Australia
(5) AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Grapevine, biotechnologies, gene transfer, genome editing, genetic improvement

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.