GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

Abstract

Context of the review – The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies. In the last 15 years, considerable knowledge has accumulated about the grapevine genome as well as the mechanisms involved in the interaction of the vine with the environment, pests and diseases. Despite the difficulties associated with genetic mapping in this species (allele diversity, chimerism, long generation intervals…), several major QTLs controlling important vegetative or reproductive traits have been identified. Considering the huge genotypic and phenotypic diversities existing in Vitis, breeding offers a substantial range of options to improve the performances of cultivars. However, even if marker-assisted selection was largely developed to shorten breeding programs, the selection of improved cultivars, whether for agronomic traits or disease tolerances, is still long and uncertain. Moreover, breeding by crossing does not preserve cultivar genetic background, when the wine industry and market being still based on varietal wines.

Significance of the review – In grapevine, pioneering biotechnologies were set up in the 1960’s to propagate and/or clean the material from micro-organisms. In the 1990’s, the basis of genetic engineering was primary established through biolistic or Agrobacterium with several derived technologies refined in the last 10 years. The latest advance is represented by a group of technologies based on genome editing which allows a much more precise modification of the genome. These technologies, so-called NBT (new breeding technologies), which theoretically do not deconstruct the phenotype of existing cultivars, could be potentially better accepted by the wine industry and consumers than previous GMO approaches. This paper review the current state-of-the-art of the biotechnologies available for grapevine genome manipulation and future prospects for genetic improvement.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Lorenza DALLA COSTA (1), Mickael MALNOY (1), David LECOURIEUX (2), Laurent DELUC (3), Fatma OUAKED- LECOURIEUX (2), Mark R. THOMAS (4) and Laurent TORREGROSA (5)

(1) Dept. of Biology and Genomic of Fruit Plants, Foundation E. Mach, 38010 San Michele all’Adige, Italy
(2) ISVV-EGFV, CNRS, INRA, Uni Bordeaux, 33883 Villenave d’Ornon, France
(3) Dept. of Horticulture, Oregon State University, OR 97331, Corvallis, USA
(4) CSIRO Agriculture and Food, Hartley Grove, Urrbrae SA 5064, Australia
(5) AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Grapevine, biotechnologies, gene transfer, genome editing, genetic improvement

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.

Management of water status in vineyards: meta-analysis of its effects on yield and grape composition

Mediterranean vineyards have been traditionally grown under rainfed conditions, but in recent decades the irrigated area has increased significantly, seeking to minimize the adverse effects of severe water stress on grape quality and yield. Given the large area occupied by vineyards, and the increasing scarcity of water resources, it is necessary to develop strategies for the optimization and efficient use of water to reduce the risk of its overexploitation. The present study aims at valorizing previous knowledge generated in different research projects by means of a meta-analysis of the effects of water status management on vineyard performance.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).