GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

Abstract

Context of the review – The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies. In the last 15 years, considerable knowledge has accumulated about the grapevine genome as well as the mechanisms involved in the interaction of the vine with the environment, pests and diseases. Despite the difficulties associated with genetic mapping in this species (allele diversity, chimerism, long generation intervals…), several major QTLs controlling important vegetative or reproductive traits have been identified. Considering the huge genotypic and phenotypic diversities existing in Vitis, breeding offers a substantial range of options to improve the performances of cultivars. However, even if marker-assisted selection was largely developed to shorten breeding programs, the selection of improved cultivars, whether for agronomic traits or disease tolerances, is still long and uncertain. Moreover, breeding by crossing does not preserve cultivar genetic background, when the wine industry and market being still based on varietal wines.

Significance of the review – In grapevine, pioneering biotechnologies were set up in the 1960’s to propagate and/or clean the material from micro-organisms. In the 1990’s, the basis of genetic engineering was primary established through biolistic or Agrobacterium with several derived technologies refined in the last 10 years. The latest advance is represented by a group of technologies based on genome editing which allows a much more precise modification of the genome. These technologies, so-called NBT (new breeding technologies), which theoretically do not deconstruct the phenotype of existing cultivars, could be potentially better accepted by the wine industry and consumers than previous GMO approaches. This paper review the current state-of-the-art of the biotechnologies available for grapevine genome manipulation and future prospects for genetic improvement.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Lorenza DALLA COSTA (1), Mickael MALNOY (1), David LECOURIEUX (2), Laurent DELUC (3), Fatma OUAKED- LECOURIEUX (2), Mark R. THOMAS (4) and Laurent TORREGROSA (5)

(1) Dept. of Biology and Genomic of Fruit Plants, Foundation E. Mach, 38010 San Michele all’Adige, Italy
(2) ISVV-EGFV, CNRS, INRA, Uni Bordeaux, 33883 Villenave d’Ornon, France
(3) Dept. of Horticulture, Oregon State University, OR 97331, Corvallis, USA
(4) CSIRO Agriculture and Food, Hartley Grove, Urrbrae SA 5064, Australia
(5) AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Grapevine, biotechnologies, gene transfer, genome editing, genetic improvement

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Il ruolo dei comuni nella gestione del territorio e nella tutela dei vitigni autoctoni di qualita’

Questo simposio organizzato dall ‘Associazione nazionale Città del Vino, che mi onoro di presiedere, è per me motivo di particolare soddisfazione perché porta a compimento parte di un percorso iniziato dall’associazione da alcuni anni e che ha un obiettivo apparentemente semplice: sollecitare gli amministratori delle Città del Vino a perseguire con tenacia, tal­volta anche con la necessaria caparbietà, programmi ed interventi che abbiano al centro, sempre, la qualità della vita dei loro territori.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.