terclim by ICS banner
IVES 9 IVES Conference Series 9 AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Abstract

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.

The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Wines basic parameters were analyzed according to OIV methods (1). Phenolic compounds and color were determined by UV-VIS spectrophotometry (2,3,4). Volatile compounds were determined by HS-SPME coupled with gas chromatography with time-of-flight mass spectrometry (GC/TOFMS) detection (5).

Regarding the color, the intensity and tone did not change significantly with aging in depth. There was a decrease in the content of total flavonoids and non-anthocyanic flavonoids and an increase in the content of total polyphenols, free anthocyanins and total anthocyanins.

Regarding volatile compounds 60 were identified and 26 shows a significantly difference among the 3 set of bottles when an analysis of variance was performed. A canonical discriminant analysis, performed only with variables that were significantly different, allows to discriminate the wines regarding the volatile compounds. In spite of being a preliminary study, results pointing out to a difference in wine characteristics as a result of maintaining bottles submerged in sea.

 

1. OIV (2021). Compendium of International Methods of Analysis of Wines and Musts
2. Glories,  Y.  (1984  ).  La  couleur  des  vins  rouges.  2ª  partie:  mesure, origine  et interpretation. Connaissance Vigne Vin 18 (4): 253-271.
3. Di Stefano, R.; Cravero, M. C.; Gentilini, N. (1989) – Metodi per lo studio dei polifenoli dei vini. L’enotecnico, (5) 83-89.
4. Singleton, V. e Rossi, J. (1965) Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticultura, 16, 144-158.
5. Pereira, C., Mendes, D., Dias, T., Garcia, R., da Silva, M. and Cabrita, M., 2021. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. Journal of Chromatography A, 1641, p.461991

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Alexandra Freire¹, Nuno Martins², Raquel Garcia¹,², Maria João Cabrita¹,²

1. Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
2. MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

Contact the author*

Keywords

ageing, red wine, volatiles

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].