terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Abstract

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration. The wines can be marketed only after 20 months of aging, of which at least 12 in wood. Despite the increasing economic importance, few studies have been published on Sforzato di Valtellina wine and to our knowledge none on volatile organic compounds (VOCs).

In this study, VOCs of Sforzato di Valtellina wine were determined by HS–SPME–GC–MS. Sensory analysis was also performed by QDA and CATA methodologies with the aim of establishing correlations between VOCs content and perceived aroma intensity and descriptors. Thirty-two wines were analyzed in 2021 from two consecutive vintages (17 wines of 2016 and 15 wines of 2017), representing wineries producing 90% by volume of this denomination.

In addition to fermentative VOCs (mainly ethyl esters and some acids), terpenes and norisoprenoids were found in contents that could potentially contribute to the aroma of Sforzato di Valtellina wines. The 2016 wines were significantly richer in total VOCs than 2017 ones, particularly regarding total norisoprenoids and fermentative esters. This result was confirmed also in sensory analysis, with 2016 wines having higher aroma intensity than 2017 ones. Despite the variability found among the wines analyzed for each vintage, some differences were reported in the contents of single compounds: vitispirane and TDN (norisoprenoids), β-pinene and linalool (terpenes), diethyl malate, ethyl hexanoate, ethyl octanoate and methyl octanoate (esters), and hexanoic and octanoic acids (volatile acids). During aging, some compounds can be formed through chemical reactions depending on wine composition and storage conditions. These reactions include ester hydrolysis and formation (associated to fruity-related descriptors), hydrolysis of non-volatile glycoside precursors and chemical rearrangements of norisoprenoids and monoterpenes promoting balsamic-type descriptors, associated here mainly to vitispirane and β-pinene. Acknowledgments: Funded by PSR 2014-2020 Regione Lombardia (Italy) project no. 201901320242. We thank the Consorzio di Tutela dei Vini di Valtellina and Coldiretti Sondrio (Sondrio, Italy) for supplying the wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Susana Río Segade¹, Maria Alessandra Paissoni¹, Domen Skrab¹, Simone Giacosa¹, Luca Rolle¹, Vincenzo Gerbi¹

1. University of Turin, Department of Agricultural, Forest and Food Sciences, Corso Enotria 2/C, 12051 Alba (CN), Italy

Contact the author*

Keywords

volatile compounds, sensory analysis, Sforzato di Valtellina, red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.