terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Abstract

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration. The wines can be marketed only after 20 months of aging, of which at least 12 in wood. Despite the increasing economic importance, few studies have been published on Sforzato di Valtellina wine and to our knowledge none on volatile organic compounds (VOCs).

In this study, VOCs of Sforzato di Valtellina wine were determined by HS–SPME–GC–MS. Sensory analysis was also performed by QDA and CATA methodologies with the aim of establishing correlations between VOCs content and perceived aroma intensity and descriptors. Thirty-two wines were analyzed in 2021 from two consecutive vintages (17 wines of 2016 and 15 wines of 2017), representing wineries producing 90% by volume of this denomination.

In addition to fermentative VOCs (mainly ethyl esters and some acids), terpenes and norisoprenoids were found in contents that could potentially contribute to the aroma of Sforzato di Valtellina wines. The 2016 wines were significantly richer in total VOCs than 2017 ones, particularly regarding total norisoprenoids and fermentative esters. This result was confirmed also in sensory analysis, with 2016 wines having higher aroma intensity than 2017 ones. Despite the variability found among the wines analyzed for each vintage, some differences were reported in the contents of single compounds: vitispirane and TDN (norisoprenoids), β-pinene and linalool (terpenes), diethyl malate, ethyl hexanoate, ethyl octanoate and methyl octanoate (esters), and hexanoic and octanoic acids (volatile acids). During aging, some compounds can be formed through chemical reactions depending on wine composition and storage conditions. These reactions include ester hydrolysis and formation (associated to fruity-related descriptors), hydrolysis of non-volatile glycoside precursors and chemical rearrangements of norisoprenoids and monoterpenes promoting balsamic-type descriptors, associated here mainly to vitispirane and β-pinene. Acknowledgments: Funded by PSR 2014-2020 Regione Lombardia (Italy) project no. 201901320242. We thank the Consorzio di Tutela dei Vini di Valtellina and Coldiretti Sondrio (Sondrio, Italy) for supplying the wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Susana Río Segade¹, Maria Alessandra Paissoni¹, Domen Skrab¹, Simone Giacosa¹, Luca Rolle¹, Vincenzo Gerbi¹

1. University of Turin, Department of Agricultural, Forest and Food Sciences, Corso Enotria 2/C, 12051 Alba (CN), Italy

Contact the author*

Keywords

volatile compounds, sensory analysis, Sforzato di Valtellina, red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.