terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Abstract

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration. The wines can be marketed only after 20 months of aging, of which at least 12 in wood. Despite the increasing economic importance, few studies have been published on Sforzato di Valtellina wine and to our knowledge none on volatile organic compounds (VOCs).

In this study, VOCs of Sforzato di Valtellina wine were determined by HS–SPME–GC–MS. Sensory analysis was also performed by QDA and CATA methodologies with the aim of establishing correlations between VOCs content and perceived aroma intensity and descriptors. Thirty-two wines were analyzed in 2021 from two consecutive vintages (17 wines of 2016 and 15 wines of 2017), representing wineries producing 90% by volume of this denomination.

In addition to fermentative VOCs (mainly ethyl esters and some acids), terpenes and norisoprenoids were found in contents that could potentially contribute to the aroma of Sforzato di Valtellina wines. The 2016 wines were significantly richer in total VOCs than 2017 ones, particularly regarding total norisoprenoids and fermentative esters. This result was confirmed also in sensory analysis, with 2016 wines having higher aroma intensity than 2017 ones. Despite the variability found among the wines analyzed for each vintage, some differences were reported in the contents of single compounds: vitispirane and TDN (norisoprenoids), β-pinene and linalool (terpenes), diethyl malate, ethyl hexanoate, ethyl octanoate and methyl octanoate (esters), and hexanoic and octanoic acids (volatile acids). During aging, some compounds can be formed through chemical reactions depending on wine composition and storage conditions. These reactions include ester hydrolysis and formation (associated to fruity-related descriptors), hydrolysis of non-volatile glycoside precursors and chemical rearrangements of norisoprenoids and monoterpenes promoting balsamic-type descriptors, associated here mainly to vitispirane and β-pinene. Acknowledgments: Funded by PSR 2014-2020 Regione Lombardia (Italy) project no. 201901320242. We thank the Consorzio di Tutela dei Vini di Valtellina and Coldiretti Sondrio (Sondrio, Italy) for supplying the wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Susana Río Segade¹, Maria Alessandra Paissoni¹, Domen Skrab¹, Simone Giacosa¹, Luca Rolle¹, Vincenzo Gerbi¹

1. University of Turin, Department of Agricultural, Forest and Food Sciences, Corso Enotria 2/C, 12051 Alba (CN), Italy

Contact the author*

Keywords

volatile compounds, sensory analysis, Sforzato di Valtellina, red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...