terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Abstract

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration. The wines can be marketed only after 20 months of aging, of which at least 12 in wood. Despite the increasing economic importance, few studies have been published on Sforzato di Valtellina wine and to our knowledge none on volatile organic compounds (VOCs).

In this study, VOCs of Sforzato di Valtellina wine were determined by HS–SPME–GC–MS. Sensory analysis was also performed by QDA and CATA methodologies with the aim of establishing correlations between VOCs content and perceived aroma intensity and descriptors. Thirty-two wines were analyzed in 2021 from two consecutive vintages (17 wines of 2016 and 15 wines of 2017), representing wineries producing 90% by volume of this denomination.

In addition to fermentative VOCs (mainly ethyl esters and some acids), terpenes and norisoprenoids were found in contents that could potentially contribute to the aroma of Sforzato di Valtellina wines. The 2016 wines were significantly richer in total VOCs than 2017 ones, particularly regarding total norisoprenoids and fermentative esters. This result was confirmed also in sensory analysis, with 2016 wines having higher aroma intensity than 2017 ones. Despite the variability found among the wines analyzed for each vintage, some differences were reported in the contents of single compounds: vitispirane and TDN (norisoprenoids), β-pinene and linalool (terpenes), diethyl malate, ethyl hexanoate, ethyl octanoate and methyl octanoate (esters), and hexanoic and octanoic acids (volatile acids). During aging, some compounds can be formed through chemical reactions depending on wine composition and storage conditions. These reactions include ester hydrolysis and formation (associated to fruity-related descriptors), hydrolysis of non-volatile glycoside precursors and chemical rearrangements of norisoprenoids and monoterpenes promoting balsamic-type descriptors, associated here mainly to vitispirane and β-pinene. Acknowledgments: Funded by PSR 2014-2020 Regione Lombardia (Italy) project no. 201901320242. We thank the Consorzio di Tutela dei Vini di Valtellina and Coldiretti Sondrio (Sondrio, Italy) for supplying the wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Susana Río Segade¹, Maria Alessandra Paissoni¹, Domen Skrab¹, Simone Giacosa¹, Luca Rolle¹, Vincenzo Gerbi¹

1. University of Turin, Department of Agricultural, Forest and Food Sciences, Corso Enotria 2/C, 12051 Alba (CN), Italy

Contact the author*

Keywords

volatile compounds, sensory analysis, Sforzato di Valtellina, red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.