terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Abstract

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sun-burn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage. Nevertheless, we used non-defoliated grapes facing north of the vines to ensure that putative damage was only due to applied irradiation and not previous sun exposure. Three weeks after the treatment, a control and the irradiated grapes were harvested and directed to small scale winemaking following a standardised protocol. Sensory evaluation using descriptive analysis with a trained panel was complemented by aroma analysis using an established head space solid phase micro extraction GC-MS method.

For Riesling, the control had a sweeter and fruitier taste, and was reminiscent of ripe fruit, which correlated with a high content of ethyl esters. In contrast, wines from irradiated Riesling grapes had a smokier flavour and correlated with plant derived odorants such as vitispirane, linalool, β-damascenone, and 4-vinylguaiacol. Also the sensory panel described the wines from treated grapes as more astringent and bitter, as well as with a more intense yellow colour. These results were backed by Pinot Blanc trials, as the control was perceived more fruity due to enhanced ethyl esters. Vice versa, wines from the irradiated grapes were more smoky and astringent. In addition, 2-aminoacetophenone was enhanced, causing the atypical aging off-flavour.

These promising results stimulated further trials, in which the length of exposure was varied gradually, to determine a threshold from which irradiation is causing negative sensory and compositional changes. In parallel, mitigation strategies such as applying reflecting particles or adaptation to sun exposure by early defoliation will be examined in lieu of varying UV/IR radiation.

1. Droulia, F., Charalampopoulos, I. (2021). Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere, 12(4), 495. https://doi.org/10.3390/atmos12040495
2. Gambetta, J. M., Holzapfel, B. P., Stoll, M., Friedel, M. (2021). Sunburn in Grapes: A Review. frontiers in Plant Science, 11, https://doi.org/10.3389/fpls.2020.604691
3. IPCC. (2014). Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]Geneva, Switzerland. ISBN: 978-92-9169-143-2

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Caterina Szmania1, Ulrich Fischer1,2

1. DLR Rheinpfalz, Neustadt an der Weinstraße/Germany
2. RPTU Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern/Germany

Contact the author*

Keywords

climate change, sunburn, white wine, off-flavour

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.