terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Abstract

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sun-burn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage. Nevertheless, we used non-defoliated grapes facing north of the vines to ensure that putative damage was only due to applied irradiation and not previous sun exposure. Three weeks after the treatment, a control and the irradiated grapes were harvested and directed to small scale winemaking following a standardised protocol. Sensory evaluation using descriptive analysis with a trained panel was complemented by aroma analysis using an established head space solid phase micro extraction GC-MS method.

For Riesling, the control had a sweeter and fruitier taste, and was reminiscent of ripe fruit, which correlated with a high content of ethyl esters. In contrast, wines from irradiated Riesling grapes had a smokier flavour and correlated with plant derived odorants such as vitispirane, linalool, β-damascenone, and 4-vinylguaiacol. Also the sensory panel described the wines from treated grapes as more astringent and bitter, as well as with a more intense yellow colour. These results were backed by Pinot Blanc trials, as the control was perceived more fruity due to enhanced ethyl esters. Vice versa, wines from the irradiated grapes were more smoky and astringent. In addition, 2-aminoacetophenone was enhanced, causing the atypical aging off-flavour.

These promising results stimulated further trials, in which the length of exposure was varied gradually, to determine a threshold from which irradiation is causing negative sensory and compositional changes. In parallel, mitigation strategies such as applying reflecting particles or adaptation to sun exposure by early defoliation will be examined in lieu of varying UV/IR radiation.

1. Droulia, F., Charalampopoulos, I. (2021). Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere, 12(4), 495. https://doi.org/10.3390/atmos12040495
2. Gambetta, J. M., Holzapfel, B. P., Stoll, M., Friedel, M. (2021). Sunburn in Grapes: A Review. frontiers in Plant Science, 11, https://doi.org/10.3389/fpls.2020.604691
3. IPCC. (2014). Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]Geneva, Switzerland. ISBN: 978-92-9169-143-2

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Caterina Szmania1, Ulrich Fischer1,2

1. DLR Rheinpfalz, Neustadt an der Weinstraße/Germany
2. RPTU Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern/Germany

Contact the author*

Keywords

climate change, sunburn, white wine, off-flavour

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.