GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Greffadapt: a relevant experimental vineyard to speed up the selection of grapevine rootstocks

Greffadapt: a relevant experimental vineyard to speed up the selection of grapevine rootstocks

Abstract

Context and purpose of the study ‐ Grapevine is grown as a grafted plant since the end of the 19th century. The large majority of rootstocks were selected at this period. Among the large diversity of existing rootstocks, few of them are commercially used in the vineyard. However, rootstocks could be considered as a relevant way of adaptation to climate change context because they have no major impact on wine typicality unlike the changes of scion varieties. Rootstock selection is a long term process. Consequently, in addition of the selection of new bred genotypes, characterizing existing rootstocks already used in foreign countries or available in germplasm collections, is a complementary strategy to allow a faster enlargement of the rootstock range available for winegrowers.
Material and methods ‐ GreffAdapt is an experimental vineyard created to get and update the agronomical characteristics of 55 rootstocks. These rootstocks were grafted with 5 scions in 3 blocks of 5 vines each. Blocks were defined according to soil resistivity measurements and the statistical power of the experimental designed was calculated. Before planting, the genetic identity of each genotype was checked with 20 microsatellites markers and their sanitary status was analyzed with ELISA assays. Planting occurred in 2015, 2016 and completed in 2017. The fresh weight of each plant was determined at grafting and the pruning weight of each vine has been recorded annually since the plantation.
Results ‐ Phenotypic data were analyzed according to the parentage with the three main genetic background (V. riparia, V. rupestris, V. berlandieri). The weight of each plant at the grafting time and the pruning weight since the plantation were assessed. The significant relation between these variables was discussed taking into account annual data sets. The first results showed that the range of conferred vigor among the rootstock panel was large enough to identify the required diversity, necessary to fit different production objectives in the French vineyard.
Overall, GreffAdapt is a very unique experimental facility to speed up the selection of rootstocks and to analyze the relationship between conferred vigor and drought tolerance, two major selection criteria for rootstocks.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Elisa MARGUERIT1*, Loïc LAGALLE1, Maria LAFARGUE1, Jean‐Pascal TANDONNET1, Jean Pascal GOUTOULY1, Isabelle BECCAVIN2, Marilyne ROQUES2, Laurent AUDEGUIN2 and Nathalie OLLAT1

1 UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France
2 Institut Français de la Vigne et du Vin, Pôle National Matériel Végétal, F-30240 Le Grau du Roi, France

Contact the author

Keywords

rootstock, rootstock × scion interaction, conferred vigor, Vitis berlandieri, drought tolerance

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.