terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

Abstract

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards². Instead, indigenous S. cerevisiae strains may enhance the typical sensory properties and characteristic profile of the wine region³. The Okanagan Valley is the major wine-producing region in British Columbia, Canada. The Measday lab has isolated S. cerevisiae indigenous strains from Okanagan Valley vineyards that are genetically distinct from commercial strains⁴. After evaluating the oenological characteristics of six indigenous strains isolated from Okanagan Crush Pad (OCP) winery in laboratory-scale fermentations, two were selected for pilot-scale winery fermentations to assess their potential as wine starter cultures. Fermentations with OCP088 and OCP125 yeast strains were carried out in triplicate 250L stainless steel barrels at OCP winery. Vin Gris (VG, Pinot Noir) and Pinot Gris (PG) varietals were chosen, the grapes were pressed, and the juice was settled to remove skins before inoculation. Major metabolites (organic acids, sugars, and ethanol) were quantified using HPLC-RID, sugar in both wines was mainly fructose, ranging between 16 g/L and 20 g/L, ABV of the finished product ranged between 10.8 and 11.3 %. Volatile compounds (terpenes, esters, ketones, and higher alcohols) were identified using SPME-GC/MS We identified the following number of volatile compounds in each fermentation: OCP125 PG (56), OCP088 PG (52), OCP125 VG (45), OCP088 VG (44). The majority of volatile compounds were esters, which are known for their contribution to wine quality. OCP 125 tended to produce more terpenes than OCP 088. Some of these compounds are responsible for honey and grapefruit-like aromas, which are atypical of these varietals, adding to the complexity of the final product.

 

1. Welke, J. E., Zanus, M., Lazarotto, M., Schmitt, K. G., & Zini, C. A.. (2012) Volatile Characterization by Multivariate Optimization of Headspace-Solid Phase Microextraction and Sensorial Evaluation of Chardonnay Base Wines. Journal of the Brazilian Chemical Society, 23(J. Braz. Chem. Soc., 2012 23(4)). doi: 10.1590/S0103-50532012000400013
2. Borneman, Anthony & Forgan, Angus & Kolouchova, Radka & Fraser, James & Schmidt, Simon. (2016). Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 (Bethesda, Md.). 6. doi: 10.1534/g3.115.025692.
3. Nikolaou, E., Soufleros, E., Bouloumpasi, E., Tzanetakis N. (2006) Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology 23, 205-211 doi:10.1016/j. fm.2005.03.004
4. Cheng, E., Martiniuk, J.T., Hamilton, J., McCarthy, M., Castellarin, S., and Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Phenolic Composition in a Canadian Wine Region. Frontiers in Genetics 11, 1-19. doi: 10.3389/fgene.2020.00908.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vivien Measday¹.

1. Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Canada

Contact the author*

Keywords

Indigenous strains, metabolites, volatile compounds, wine fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.