terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

Abstract

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards². Instead, indigenous S. cerevisiae strains may enhance the typical sensory properties and characteristic profile of the wine region³. The Okanagan Valley is the major wine-producing region in British Columbia, Canada. The Measday lab has isolated S. cerevisiae indigenous strains from Okanagan Valley vineyards that are genetically distinct from commercial strains⁴. After evaluating the oenological characteristics of six indigenous strains isolated from Okanagan Crush Pad (OCP) winery in laboratory-scale fermentations, two were selected for pilot-scale winery fermentations to assess their potential as wine starter cultures. Fermentations with OCP088 and OCP125 yeast strains were carried out in triplicate 250L stainless steel barrels at OCP winery. Vin Gris (VG, Pinot Noir) and Pinot Gris (PG) varietals were chosen, the grapes were pressed, and the juice was settled to remove skins before inoculation. Major metabolites (organic acids, sugars, and ethanol) were quantified using HPLC-RID, sugar in both wines was mainly fructose, ranging between 16 g/L and 20 g/L, ABV of the finished product ranged between 10.8 and 11.3 %. Volatile compounds (terpenes, esters, ketones, and higher alcohols) were identified using SPME-GC/MS We identified the following number of volatile compounds in each fermentation: OCP125 PG (56), OCP088 PG (52), OCP125 VG (45), OCP088 VG (44). The majority of volatile compounds were esters, which are known for their contribution to wine quality. OCP 125 tended to produce more terpenes than OCP 088. Some of these compounds are responsible for honey and grapefruit-like aromas, which are atypical of these varietals, adding to the complexity of the final product.

 

1. Welke, J. E., Zanus, M., Lazarotto, M., Schmitt, K. G., & Zini, C. A.. (2012) Volatile Characterization by Multivariate Optimization of Headspace-Solid Phase Microextraction and Sensorial Evaluation of Chardonnay Base Wines. Journal of the Brazilian Chemical Society, 23(J. Braz. Chem. Soc., 2012 23(4)). doi: 10.1590/S0103-50532012000400013
2. Borneman, Anthony & Forgan, Angus & Kolouchova, Radka & Fraser, James & Schmidt, Simon. (2016). Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 (Bethesda, Md.). 6. doi: 10.1534/g3.115.025692.
3. Nikolaou, E., Soufleros, E., Bouloumpasi, E., Tzanetakis N. (2006) Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology 23, 205-211 doi:10.1016/j. fm.2005.03.004
4. Cheng, E., Martiniuk, J.T., Hamilton, J., McCarthy, M., Castellarin, S., and Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Phenolic Composition in a Canadian Wine Region. Frontiers in Genetics 11, 1-19. doi: 10.3389/fgene.2020.00908.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vivien Measday¹.

1. Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Canada

Contact the author*

Keywords

Indigenous strains, metabolites, volatile compounds, wine fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.