terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

Abstract

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards². Instead, indigenous S. cerevisiae strains may enhance the typical sensory properties and characteristic profile of the wine region³. The Okanagan Valley is the major wine-producing region in British Columbia, Canada. The Measday lab has isolated S. cerevisiae indigenous strains from Okanagan Valley vineyards that are genetically distinct from commercial strains⁴. After evaluating the oenological characteristics of six indigenous strains isolated from Okanagan Crush Pad (OCP) winery in laboratory-scale fermentations, two were selected for pilot-scale winery fermentations to assess their potential as wine starter cultures. Fermentations with OCP088 and OCP125 yeast strains were carried out in triplicate 250L stainless steel barrels at OCP winery. Vin Gris (VG, Pinot Noir) and Pinot Gris (PG) varietals were chosen, the grapes were pressed, and the juice was settled to remove skins before inoculation. Major metabolites (organic acids, sugars, and ethanol) were quantified using HPLC-RID, sugar in both wines was mainly fructose, ranging between 16 g/L and 20 g/L, ABV of the finished product ranged between 10.8 and 11.3 %. Volatile compounds (terpenes, esters, ketones, and higher alcohols) were identified using SPME-GC/MS We identified the following number of volatile compounds in each fermentation: OCP125 PG (56), OCP088 PG (52), OCP125 VG (45), OCP088 VG (44). The majority of volatile compounds were esters, which are known for their contribution to wine quality. OCP 125 tended to produce more terpenes than OCP 088. Some of these compounds are responsible for honey and grapefruit-like aromas, which are atypical of these varietals, adding to the complexity of the final product.

 

1. Welke, J. E., Zanus, M., Lazarotto, M., Schmitt, K. G., & Zini, C. A.. (2012) Volatile Characterization by Multivariate Optimization of Headspace-Solid Phase Microextraction and Sensorial Evaluation of Chardonnay Base Wines. Journal of the Brazilian Chemical Society, 23(J. Braz. Chem. Soc., 2012 23(4)). doi: 10.1590/S0103-50532012000400013
2. Borneman, Anthony & Forgan, Angus & Kolouchova, Radka & Fraser, James & Schmidt, Simon. (2016). Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 (Bethesda, Md.). 6. doi: 10.1534/g3.115.025692.
3. Nikolaou, E., Soufleros, E., Bouloumpasi, E., Tzanetakis N. (2006) Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology 23, 205-211 doi:10.1016/j. fm.2005.03.004
4. Cheng, E., Martiniuk, J.T., Hamilton, J., McCarthy, M., Castellarin, S., and Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Phenolic Composition in a Canadian Wine Region. Frontiers in Genetics 11, 1-19. doi: 10.3389/fgene.2020.00908.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vivien Measday¹.

1. Wine Research Center, Faculty of Land and Food Systems, University of British Columbia, Canada

Contact the author*

Keywords

Indigenous strains, metabolites, volatile compounds, wine fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).