terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

Abstract

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

In this scenario, understanding the relationship between climatic conditions existing in specific grape growing areas and the composition of the grapes and wines composition grown in that particular region is of major interest. The aim of this project is to investigate the aromatic profile of Corvina grapes and wines in the Valpolicella region and how it is impacted by the different climatic zones. Valpolicella is a wine-making region found in the north of Italy in the zona of Veneto, it is divided into three zones (Valpolicella Classica, Valpantena, and Orientale). All zones are subdivided into valleys and hilly areas which can range from 30 up to 500 m a.s.l., this variation in altitudes plays a role in the climatic conditions.

First, the climatic zones were studied in the region. Data from 24 weather stations across this region showed that there are 5 different HI climatic zones from temperate to too hot. Based on this information, grapes were obtained from 16 different vineyards from three different climatic zones (warm temperate, warm, and very warm), in order to carry out micro vinifications and grape macerations. Vinification was carried out in triplicate with 800 g of Corvina grape in bottles of 1 L Saccharomyces cerevisiae AWRI 796 (Experti Srl) and potassium metabisulphite was added, and fermentation was carried at 22 °C until it reached a concentration of ~1 g/L of glucose-fructose. In addition, grape macerates were also prepared to investigate the varietal compounds in the absence of yeast activity. Grape macerates were carried out in triplicate with 500 g of Corvina grapes in bottles of 1 L with ethanol (15% w/w), potassium metabisulphite, and dimethyl decarbonate at 22 °C for 15 days.

For the quantification of alcohols, esters, fatty acids, benzenoids, terpenes, and volatile sulfur compounds, a combined analytical strategy involving SPE and SPME extraction methods followed by GC- MS analysis was used. Enological parameters were measured using a Biosystems Y15 multiparametric analyzer. Results will contribute to developing tailored strategies for climate change management for Valpolicella wines.

 

1. IEA. (2022). Italy climate resilience policy indicator – Analysis. https://www.iea.org/articles/italy-climate-resilience-poli-cy-indicator 
2. Zhang, P., Howell, K., Li, Y., Li, L., Wang, J., Eckard, R., & Barlow, E. W. R. (2023). Using historical weather data and a novel season temperature index to classify winegrape growing zones in Australia. Scientia Horticulturae, 307. https://doi. org/10.1016/j.scienta.2022.111516 

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aldo Neill, Mendoza Santiago¹, Maurizio Ugliano¹

1. University of Veron

Contact the author*

Keywords

Corvina, huglin index, temperature increase, aroma profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.