terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

Abstract

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

In this scenario, understanding the relationship between climatic conditions existing in specific grape growing areas and the composition of the grapes and wines composition grown in that particular region is of major interest. The aim of this project is to investigate the aromatic profile of Corvina grapes and wines in the Valpolicella region and how it is impacted by the different climatic zones. Valpolicella is a wine-making region found in the north of Italy in the zona of Veneto, it is divided into three zones (Valpolicella Classica, Valpantena, and Orientale). All zones are subdivided into valleys and hilly areas which can range from 30 up to 500 m a.s.l., this variation in altitudes plays a role in the climatic conditions.

First, the climatic zones were studied in the region. Data from 24 weather stations across this region showed that there are 5 different HI climatic zones from temperate to too hot. Based on this information, grapes were obtained from 16 different vineyards from three different climatic zones (warm temperate, warm, and very warm), in order to carry out micro vinifications and grape macerations. Vinification was carried out in triplicate with 800 g of Corvina grape in bottles of 1 L Saccharomyces cerevisiae AWRI 796 (Experti Srl) and potassium metabisulphite was added, and fermentation was carried at 22 °C until it reached a concentration of ~1 g/L of glucose-fructose. In addition, grape macerates were also prepared to investigate the varietal compounds in the absence of yeast activity. Grape macerates were carried out in triplicate with 500 g of Corvina grapes in bottles of 1 L with ethanol (15% w/w), potassium metabisulphite, and dimethyl decarbonate at 22 °C for 15 days.

For the quantification of alcohols, esters, fatty acids, benzenoids, terpenes, and volatile sulfur compounds, a combined analytical strategy involving SPE and SPME extraction methods followed by GC- MS analysis was used. Enological parameters were measured using a Biosystems Y15 multiparametric analyzer. Results will contribute to developing tailored strategies for climate change management for Valpolicella wines.

 

1. IEA. (2022). Italy climate resilience policy indicator – Analysis. https://www.iea.org/articles/italy-climate-resilience-poli-cy-indicator 
2. Zhang, P., Howell, K., Li, Y., Li, L., Wang, J., Eckard, R., & Barlow, E. W. R. (2023). Using historical weather data and a novel season temperature index to classify winegrape growing zones in Australia. Scientia Horticulturae, 307. https://doi. org/10.1016/j.scienta.2022.111516 

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aldo Neill, Mendoza Santiago¹, Maurizio Ugliano¹

1. University of Veron

Contact the author*

Keywords

Corvina, huglin index, temperature increase, aroma profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.