terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

Abstract

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

In this scenario, understanding the relationship between climatic conditions existing in specific grape growing areas and the composition of the grapes and wines composition grown in that particular region is of major interest. The aim of this project is to investigate the aromatic profile of Corvina grapes and wines in the Valpolicella region and how it is impacted by the different climatic zones. Valpolicella is a wine-making region found in the north of Italy in the zona of Veneto, it is divided into three zones (Valpolicella Classica, Valpantena, and Orientale). All zones are subdivided into valleys and hilly areas which can range from 30 up to 500 m a.s.l., this variation in altitudes plays a role in the climatic conditions.

First, the climatic zones were studied in the region. Data from 24 weather stations across this region showed that there are 5 different HI climatic zones from temperate to too hot. Based on this information, grapes were obtained from 16 different vineyards from three different climatic zones (warm temperate, warm, and very warm), in order to carry out micro vinifications and grape macerations. Vinification was carried out in triplicate with 800 g of Corvina grape in bottles of 1 L Saccharomyces cerevisiae AWRI 796 (Experti Srl) and potassium metabisulphite was added, and fermentation was carried at 22 °C until it reached a concentration of ~1 g/L of glucose-fructose. In addition, grape macerates were also prepared to investigate the varietal compounds in the absence of yeast activity. Grape macerates were carried out in triplicate with 500 g of Corvina grapes in bottles of 1 L with ethanol (15% w/w), potassium metabisulphite, and dimethyl decarbonate at 22 °C for 15 days.

For the quantification of alcohols, esters, fatty acids, benzenoids, terpenes, and volatile sulfur compounds, a combined analytical strategy involving SPE and SPME extraction methods followed by GC- MS analysis was used. Enological parameters were measured using a Biosystems Y15 multiparametric analyzer. Results will contribute to developing tailored strategies for climate change management for Valpolicella wines.

 

1. IEA. (2022). Italy climate resilience policy indicator – Analysis. https://www.iea.org/articles/italy-climate-resilience-poli-cy-indicator 
2. Zhang, P., Howell, K., Li, Y., Li, L., Wang, J., Eckard, R., & Barlow, E. W. R. (2023). Using historical weather data and a novel season temperature index to classify winegrape growing zones in Australia. Scientia Horticulturae, 307. https://doi. org/10.1016/j.scienta.2022.111516 

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aldo Neill, Mendoza Santiago¹, Maurizio Ugliano¹

1. University of Veron

Contact the author*

Keywords

Corvina, huglin index, temperature increase, aroma profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.