terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

Abstract

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

In this scenario, understanding the relationship between climatic conditions existing in specific grape growing areas and the composition of the grapes and wines composition grown in that particular region is of major interest. The aim of this project is to investigate the aromatic profile of Corvina grapes and wines in the Valpolicella region and how it is impacted by the different climatic zones. Valpolicella is a wine-making region found in the north of Italy in the zona of Veneto, it is divided into three zones (Valpolicella Classica, Valpantena, and Orientale). All zones are subdivided into valleys and hilly areas which can range from 30 up to 500 m a.s.l., this variation in altitudes plays a role in the climatic conditions.

First, the climatic zones were studied in the region. Data from 24 weather stations across this region showed that there are 5 different HI climatic zones from temperate to too hot. Based on this information, grapes were obtained from 16 different vineyards from three different climatic zones (warm temperate, warm, and very warm), in order to carry out micro vinifications and grape macerations. Vinification was carried out in triplicate with 800 g of Corvina grape in bottles of 1 L Saccharomyces cerevisiae AWRI 796 (Experti Srl) and potassium metabisulphite was added, and fermentation was carried at 22 °C until it reached a concentration of ~1 g/L of glucose-fructose. In addition, grape macerates were also prepared to investigate the varietal compounds in the absence of yeast activity. Grape macerates were carried out in triplicate with 500 g of Corvina grapes in bottles of 1 L with ethanol (15% w/w), potassium metabisulphite, and dimethyl decarbonate at 22 °C for 15 days.

For the quantification of alcohols, esters, fatty acids, benzenoids, terpenes, and volatile sulfur compounds, a combined analytical strategy involving SPE and SPME extraction methods followed by GC- MS analysis was used. Enological parameters were measured using a Biosystems Y15 multiparametric analyzer. Results will contribute to developing tailored strategies for climate change management for Valpolicella wines.

 

1. IEA. (2022). Italy climate resilience policy indicator – Analysis. https://www.iea.org/articles/italy-climate-resilience-poli-cy-indicator 
2. Zhang, P., Howell, K., Li, Y., Li, L., Wang, J., Eckard, R., & Barlow, E. W. R. (2023). Using historical weather data and a novel season temperature index to classify winegrape growing zones in Australia. Scientia Horticulturae, 307. https://doi. org/10.1016/j.scienta.2022.111516 

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aldo Neill, Mendoza Santiago¹, Maurizio Ugliano¹

1. University of Veron

Contact the author*

Keywords

Corvina, huglin index, temperature increase, aroma profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.