terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

Abstract

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease. The aim of this study was therefore to determine the foaming properties of wines produced with a synthetic must contaminated by a Rhizopus or Botrytis culture. In order to confirm the identification of the fungal strain, the D1-D3 domains of the 28S rRNA gene were amplified and sequenced. BLAST search indicated 100% identity with a reference strain of Rhizopus lyococcus (CBS 320.35).

The complete experimental design presents 12 modalities (AF in triplicate, i.e. 36 bottles). The fungal isolates of Botrytis cinerea (B. c.) and Rhizopus lyococcus (R. l.) were cultured using a modified version of the method described by Gimenez et al. (2022). Alcoholic fermentations (AF) were performed in 500mL glass bottles from synthetic grape must supplemented or not with 50 mg/L of epicatechin. The yeast strain S. cerevisiae Lalvin EC1118 (Lallemand) was used for the AF process. To examine the impact of the pathoge- nic fungi, 10% (v/v) of B.c. or R.l. culture were added (separately) to the model grape juice. Furthermore, two different concentrations of L-malic acid were added to the fermentation media creating two sets of conditions : 2g/L of L-malic acid (pH=3.5) and 6 g/L of L-malic acid (pH=3). The results of the wines with fungus were compared to those of the control wines obtained without fungus.

The results of this study show that the presence of Rhizopus in the must significantly or highly significantly degrades the foamability and foam stability of the wines (foam measured with the KRUSS DFA100 equipment). The analysis of the protein composition by SDS-PAGE clearly shows a degradation of the yeast proteins by the fungal proteases of Rhizopus. Surprisingly, the Botrytis strain used did not affect the foam of the wines. These differences in proteolytic activity are confirmed by using BSA as a subs- trate: the Rhizopus culture degrades the 500 mg/L BSA in a few minutes, whereas the BSA degradation by the Botrytis culture remains considerably lower despite the longer culture of the fungus. Finally, the presence of epicatechin did not affect the wines’ foaming properties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Richard Marchal¹, Candela Ruiz De Villa Sardón², Arnau Just Borràs², Nicolas Rozès², Fernando Zamora Marín², Joan-Miquel Canals Bosch², Thomas Salmon¹, José Francisco Cano Lira³, Jacques-Emmanuel Barbier4, Sabine Gognies¹

1. Université de Reims Champagne-Ardenne, Faculté des Sciences, Laboratoire d’Oenologie, 51687 Reims CEDEX 02, France
2. Universitat Rovira i Virgili, Facultat d’Enologia, Campus Sescelades, 43007 Tarragona, Spain
3. Un+iversitat Rovira i Virgili, Mycology, Environmental Microbiology Unit, Medicine Faculty / Oenology Faculty,  Sant Llorenç 21, 43201-Reus, Spain
4. Institut Œnologique de Champagne – ZI de Mardeuil – 51201 Épernay Cedex, France 

Contact the author*

Keywords

wine foam, Rhizopus, yeast proteins, aspartic protease

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.