terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

Abstract

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease. The aim of this study was therefore to determine the foaming properties of wines produced with a synthetic must contaminated by a Rhizopus or Botrytis culture. In order to confirm the identification of the fungal strain, the D1-D3 domains of the 28S rRNA gene were amplified and sequenced. BLAST search indicated 100% identity with a reference strain of Rhizopus lyococcus (CBS 320.35).

The complete experimental design presents 12 modalities (AF in triplicate, i.e. 36 bottles). The fungal isolates of Botrytis cinerea (B. c.) and Rhizopus lyococcus (R. l.) were cultured using a modified version of the method described by Gimenez et al. (2022). Alcoholic fermentations (AF) were performed in 500mL glass bottles from synthetic grape must supplemented or not with 50 mg/L of epicatechin. The yeast strain S. cerevisiae Lalvin EC1118 (Lallemand) was used for the AF process. To examine the impact of the pathoge- nic fungi, 10% (v/v) of B.c. or R.l. culture were added (separately) to the model grape juice. Furthermore, two different concentrations of L-malic acid were added to the fermentation media creating two sets of conditions : 2g/L of L-malic acid (pH=3.5) and 6 g/L of L-malic acid (pH=3). The results of the wines with fungus were compared to those of the control wines obtained without fungus.

The results of this study show that the presence of Rhizopus in the must significantly or highly significantly degrades the foamability and foam stability of the wines (foam measured with the KRUSS DFA100 equipment). The analysis of the protein composition by SDS-PAGE clearly shows a degradation of the yeast proteins by the fungal proteases of Rhizopus. Surprisingly, the Botrytis strain used did not affect the foam of the wines. These differences in proteolytic activity are confirmed by using BSA as a subs- trate: the Rhizopus culture degrades the 500 mg/L BSA in a few minutes, whereas the BSA degradation by the Botrytis culture remains considerably lower despite the longer culture of the fungus. Finally, the presence of epicatechin did not affect the wines’ foaming properties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Richard Marchal¹, Candela Ruiz De Villa Sardón², Arnau Just Borràs², Nicolas Rozès², Fernando Zamora Marín², Joan-Miquel Canals Bosch², Thomas Salmon¹, José Francisco Cano Lira³, Jacques-Emmanuel Barbier4, Sabine Gognies¹

1. Université de Reims Champagne-Ardenne, Faculté des Sciences, Laboratoire d’Oenologie, 51687 Reims CEDEX 02, France
2. Universitat Rovira i Virgili, Facultat d’Enologia, Campus Sescelades, 43007 Tarragona, Spain
3. Un+iversitat Rovira i Virgili, Mycology, Environmental Microbiology Unit, Medicine Faculty / Oenology Faculty,  Sant Llorenç 21, 43201-Reus, Spain
4. Institut Œnologique de Champagne – ZI de Mardeuil – 51201 Épernay Cedex, France 

Contact the author*

Keywords

wine foam, Rhizopus, yeast proteins, aspartic protease

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.