terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

Abstract

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease. The aim of this study was therefore to determine the foaming properties of wines produced with a synthetic must contaminated by a Rhizopus or Botrytis culture. In order to confirm the identification of the fungal strain, the D1-D3 domains of the 28S rRNA gene were amplified and sequenced. BLAST search indicated 100% identity with a reference strain of Rhizopus lyococcus (CBS 320.35).

The complete experimental design presents 12 modalities (AF in triplicate, i.e. 36 bottles). The fungal isolates of Botrytis cinerea (B. c.) and Rhizopus lyococcus (R. l.) were cultured using a modified version of the method described by Gimenez et al. (2022). Alcoholic fermentations (AF) were performed in 500mL glass bottles from synthetic grape must supplemented or not with 50 mg/L of epicatechin. The yeast strain S. cerevisiae Lalvin EC1118 (Lallemand) was used for the AF process. To examine the impact of the pathoge- nic fungi, 10% (v/v) of B.c. or R.l. culture were added (separately) to the model grape juice. Furthermore, two different concentrations of L-malic acid were added to the fermentation media creating two sets of conditions : 2g/L of L-malic acid (pH=3.5) and 6 g/L of L-malic acid (pH=3). The results of the wines with fungus were compared to those of the control wines obtained without fungus.

The results of this study show that the presence of Rhizopus in the must significantly or highly significantly degrades the foamability and foam stability of the wines (foam measured with the KRUSS DFA100 equipment). The analysis of the protein composition by SDS-PAGE clearly shows a degradation of the yeast proteins by the fungal proteases of Rhizopus. Surprisingly, the Botrytis strain used did not affect the foam of the wines. These differences in proteolytic activity are confirmed by using BSA as a subs- trate: the Rhizopus culture degrades the 500 mg/L BSA in a few minutes, whereas the BSA degradation by the Botrytis culture remains considerably lower despite the longer culture of the fungus. Finally, the presence of epicatechin did not affect the wines’ foaming properties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Richard Marchal¹, Candela Ruiz De Villa Sardón², Arnau Just Borràs², Nicolas Rozès², Fernando Zamora Marín², Joan-Miquel Canals Bosch², Thomas Salmon¹, José Francisco Cano Lira³, Jacques-Emmanuel Barbier4, Sabine Gognies¹

1. Université de Reims Champagne-Ardenne, Faculté des Sciences, Laboratoire d’Oenologie, 51687 Reims CEDEX 02, France
2. Universitat Rovira i Virgili, Facultat d’Enologia, Campus Sescelades, 43007 Tarragona, Spain
3. Un+iversitat Rovira i Virgili, Mycology, Environmental Microbiology Unit, Medicine Faculty / Oenology Faculty,  Sant Llorenç 21, 43201-Reus, Spain
4. Institut Œnologique de Champagne – ZI de Mardeuil – 51201 Épernay Cedex, France 

Contact the author*

Keywords

wine foam, Rhizopus, yeast proteins, aspartic protease

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.