terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

Abstract

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease. The aim of this study was therefore to determine the foaming properties of wines produced with a synthetic must contaminated by a Rhizopus or Botrytis culture. In order to confirm the identification of the fungal strain, the D1-D3 domains of the 28S rRNA gene were amplified and sequenced. BLAST search indicated 100% identity with a reference strain of Rhizopus lyococcus (CBS 320.35).

The complete experimental design presents 12 modalities (AF in triplicate, i.e. 36 bottles). The fungal isolates of Botrytis cinerea (B. c.) and Rhizopus lyococcus (R. l.) were cultured using a modified version of the method described by Gimenez et al. (2022). Alcoholic fermentations (AF) were performed in 500mL glass bottles from synthetic grape must supplemented or not with 50 mg/L of epicatechin. The yeast strain S. cerevisiae Lalvin EC1118 (Lallemand) was used for the AF process. To examine the impact of the pathoge- nic fungi, 10% (v/v) of B.c. or R.l. culture were added (separately) to the model grape juice. Furthermore, two different concentrations of L-malic acid were added to the fermentation media creating two sets of conditions : 2g/L of L-malic acid (pH=3.5) and 6 g/L of L-malic acid (pH=3). The results of the wines with fungus were compared to those of the control wines obtained without fungus.

The results of this study show that the presence of Rhizopus in the must significantly or highly significantly degrades the foamability and foam stability of the wines (foam measured with the KRUSS DFA100 equipment). The analysis of the protein composition by SDS-PAGE clearly shows a degradation of the yeast proteins by the fungal proteases of Rhizopus. Surprisingly, the Botrytis strain used did not affect the foam of the wines. These differences in proteolytic activity are confirmed by using BSA as a subs- trate: the Rhizopus culture degrades the 500 mg/L BSA in a few minutes, whereas the BSA degradation by the Botrytis culture remains considerably lower despite the longer culture of the fungus. Finally, the presence of epicatechin did not affect the wines’ foaming properties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Richard Marchal¹, Candela Ruiz De Villa Sardón², Arnau Just Borràs², Nicolas Rozès², Fernando Zamora Marín², Joan-Miquel Canals Bosch², Thomas Salmon¹, José Francisco Cano Lira³, Jacques-Emmanuel Barbier4, Sabine Gognies¹

1. Université de Reims Champagne-Ardenne, Faculté des Sciences, Laboratoire d’Oenologie, 51687 Reims CEDEX 02, France
2. Universitat Rovira i Virgili, Facultat d’Enologia, Campus Sescelades, 43007 Tarragona, Spain
3. Un+iversitat Rovira i Virgili, Mycology, Environmental Microbiology Unit, Medicine Faculty / Oenology Faculty,  Sant Llorenç 21, 43201-Reus, Spain
4. Institut Œnologique de Champagne – ZI de Mardeuil – 51201 Épernay Cedex, France 

Contact the author*

Keywords

wine foam, Rhizopus, yeast proteins, aspartic protease

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.