terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

Abstract

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease. The aim of this study was therefore to determine the foaming properties of wines produced with a synthetic must contaminated by a Rhizopus or Botrytis culture. In order to confirm the identification of the fungal strain, the D1-D3 domains of the 28S rRNA gene were amplified and sequenced. BLAST search indicated 100% identity with a reference strain of Rhizopus lyococcus (CBS 320.35).

The complete experimental design presents 12 modalities (AF in triplicate, i.e. 36 bottles). The fungal isolates of Botrytis cinerea (B. c.) and Rhizopus lyococcus (R. l.) were cultured using a modified version of the method described by Gimenez et al. (2022). Alcoholic fermentations (AF) were performed in 500mL glass bottles from synthetic grape must supplemented or not with 50 mg/L of epicatechin. The yeast strain S. cerevisiae Lalvin EC1118 (Lallemand) was used for the AF process. To examine the impact of the pathoge- nic fungi, 10% (v/v) of B.c. or R.l. culture were added (separately) to the model grape juice. Furthermore, two different concentrations of L-malic acid were added to the fermentation media creating two sets of conditions : 2g/L of L-malic acid (pH=3.5) and 6 g/L of L-malic acid (pH=3). The results of the wines with fungus were compared to those of the control wines obtained without fungus.

The results of this study show that the presence of Rhizopus in the must significantly or highly significantly degrades the foamability and foam stability of the wines (foam measured with the KRUSS DFA100 equipment). The analysis of the protein composition by SDS-PAGE clearly shows a degradation of the yeast proteins by the fungal proteases of Rhizopus. Surprisingly, the Botrytis strain used did not affect the foam of the wines. These differences in proteolytic activity are confirmed by using BSA as a subs- trate: the Rhizopus culture degrades the 500 mg/L BSA in a few minutes, whereas the BSA degradation by the Botrytis culture remains considerably lower despite the longer culture of the fungus. Finally, the presence of epicatechin did not affect the wines’ foaming properties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Richard Marchal¹, Candela Ruiz De Villa Sardón², Arnau Just Borràs², Nicolas Rozès², Fernando Zamora Marín², Joan-Miquel Canals Bosch², Thomas Salmon¹, José Francisco Cano Lira³, Jacques-Emmanuel Barbier4, Sabine Gognies¹

1. Université de Reims Champagne-Ardenne, Faculté des Sciences, Laboratoire d’Oenologie, 51687 Reims CEDEX 02, France
2. Universitat Rovira i Virgili, Facultat d’Enologia, Campus Sescelades, 43007 Tarragona, Spain
3. Un+iversitat Rovira i Virgili, Mycology, Environmental Microbiology Unit, Medicine Faculty / Oenology Faculty,  Sant Llorenç 21, 43201-Reus, Spain
4. Institut Œnologique de Champagne – ZI de Mardeuil – 51201 Épernay Cedex, France 

Contact the author*

Keywords

wine foam, Rhizopus, yeast proteins, aspartic protease

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.